1. Barney, C.W., et al., Cavitation in soft matter. Proceedings of the National Academy of Sciences, 2020. 117(17): p. 9157-9165. [
DOI:10.1073/pnas.1920168117] [
PMID] [
]
2. Subhan, A., A.-H.I. Mourad, and Y. Al-Douri, Influence of laser process parameters, liquid medium, and external field on the synthesis of colloidal metal nanoparticles using pulsed laser ablation in liquid: a review. Nanomaterials, 2022. 12(13): p. 2144. [
DOI:10.3390/nano12132144] [
PMID] [
]
3. Yan, Y., et al., Brain delivery of curcumin through low-intensity ultrasound-induced blood-brain barrier opening via lipid-plga nanobubbles. International Journal of Nanomedicine, 2021: p. 7433-7447. [
DOI:10.2147/IJN.S327737] [
PMID] [
]
4. Stride, E. and M. Edirisinghe, Novel microbubble preparation technologies. Soft matter, 2008. 4(12): p. 2350-2359. [
DOI:10.1039/b809517p]
5. Hernot, S. and A.L. Klibanov, Microbubbles in ultrasound-triggered drug and gene delivery. Advanced drug delivery reviews, 2008. 60(10): p. 1153-1166. [
DOI:10.1016/j.addr.2008.03.005] [
PMID] [
]
6. Gramiak, R. and P.M. Shah, Echocardiography of the aortic root. Investigative radiology, 1968. 3(5): p. 356-366. [
DOI:10.1097/00004424-196809000-00011] [
PMID]
7. Sirsi, S. and M. Borden, Microbubble compositions, properties and biomedical applications. Bubble Science, Engineering & Technology, 2009. 1(1-2): p. 3-17. [
DOI:10.1179/175889709X446507] [
PMID] [
]
8. Wolf, A., et al., Determining Lyapunov exponents from a time series. Physica D: nonlinear phenomena, 1985. 16(3): p. 285-317. [
DOI:10.1016/0167-2789(85)90011-9]
9. Lauterborn, W. and E. Cramer, Subharmonic route to chaos observed in acoustics. Physical Review Letters, 1981. 47(20): p. 1445. [
DOI:10.1103/PhysRevLett.47.1445]
10. Wu, J., J. Pepe, and W. Dewitt III, Nonlinear behaviors of contrast agents relevant to diagnostic and therapeutic applications. Ultrasound in medicine & biology, 2003. 29(4): p. 555-562. [
DOI:10.1016/S0301-5629(02)00789-5] [
PMID]
11. Church, C.C., The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. The Journal of the Acoustical Society of America, 1995. 97(3): p. 1510-1521. [
DOI:10.1121/1.412091]
12. Parlitz, U., et al., Bifurcation structure of bubble oscillators. Journal of the Acoustical Society of America, 1990. 88: p. 1061-1077. [
DOI:10.1121/1.399855]
13. De Jong, N., et al. Characteristics of contrast agents and 2D imaging. in 1996 IEEE Ultrasonics Symposium. Proceedings. 1996. IEEE. [
DOI:10.1109/ULTSYM.1996.584339]
14. Qin, S. and K.W. Ferrara, A model for the dynamics of ultrasound contrast agents in vivo. The Journal of the Acoustical Society of America, 2010. 128(3): p. 1511-1521. [
DOI:10.1121/1.3409476] [
]
15. Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, 1984. 81(1): p. 511-519. [
DOI:10.1063/1.447334]
16. Hoover, W.G., Canonical dynamics: Equilibrium phase-space distributions. Physical review A, 1985. 31(3): p. 1695. [
DOI:10.1103/PhysRevA.31.1695] [
PMID]
17. Kalová, J. and R. Mareš, Temperature dependence of the surface tension of water, including the supercooled region. International Journal of Thermophysics, 2022. 43(10): p. 154. [
DOI:10.1007/s10765-022-03077-y]
18. Phan, T.-H., et al., Thermodynamic effects on single cavitation bubble dynamics under various ambient temperature conditions. Physics of Fluids, 2022. 34(2). [
DOI:10.1063/5.0076913]
19. Ghazivini, M., et al., A review on correlations of bubble growth mechanisms and bubble dynamics parameters in nucleate boiling. Journal of Thermal Analysis and Calorimetry, 2022: p. 1-37.
20. Bar, C.P., 2 Hydraulic Oil Density and Viscosity as a Function of Temperature and Pressure.
21. Ferrara, K., R. Pollard, and M. Borden, Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng., 2007. 9(1): p. 415-447. [
DOI:10.1146/annurev.bioeng.8.061505.095852] [
PMID]
22. Behnia, S., et al., Nonlinear transitions of a spherical cavitation bubble. Chaos, Solitons & Fractals, 2009. 41(2): p. 818-828. [
DOI:10.1016/j.chaos.2008.04.011]
23. Omale, D., P. Ojih, and M. Ogwo, Mathematical analysis of stiff and non-stiff initial value problems of ordinary differential equation using MATLAB. International journal of scientific & engineering research, 2014. 5(9): p. 49-59.
24. Jamali, B., S. Behnia, and S. Fathizadeh, Bubble dynamics: The role of acoustic pressure and temperature on stability and multifractality. The Journal of the Acoustical Society of America, 2025. 157(4): p. 3133-3147. [
DOI:10.1121/10.0036458] [
PMID]
25. Paul, S., et al., Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery. Computational mechanics, 2014. 53: p. 413-435. [
DOI:10.1007/s00466-013-0962-4] [
PMID] [
]