logo
Volume 22, Issue 2 (12-2025)                   ASWTR 2025, 22(2): 42-47 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fateh H, Asgharpour M, Khayatajami M, Jameie S B, Derakhshesh A, Farhadi M, et al . AI-Driven Optimization of Long-Term Potentiation Protocols in an Experimental Model of Alzheimer’s Disease. ASWTR 2025; 22 (2) :42-47
URL: http://icml.ir/article-1-681-en.html
Neurosciencr research center, Iran university of medical sciences, tehran, Iran
Abstract:   (23 Views)
Background: Alzheimer’s disease (AD), one of the most prevalent neurodegenerative disorders, is marked by progressive memory loss and cognitive decline. With the rapid advancement of artificial intelligence (AI), data-driven approaches have become increasingly important in both basic and clinical neuroscience research. While animal models remain indispensable for elucidating disease mechanisms and testing therapeutic strategies, such experiments are often costly and time-consuming. This study, therefore, sought to refine the experimental protocol for inducing long-term potentiation (LTP) in an animal model of AD through AI-driven data mining techniques.
Methods: Electrophysiological data were obtained from male Wistar rats (n = 36) divided into three groups: control, sham-operated, and AD. The AD model was induced via selective lesioning of the Basal Nucleus of Meynert (NBM) using ibotenic acid. Data preprocessing and analysis were performed in Python. Feature selection and ranking were conducted using Mutual Information, Gain Ratio, and Gini Index, followed by correlation-based filtering through the visualization of heatmaps. Features with low predictive power or high redundancy were systematically excluded to construct a more efficient classification framework.
Results: Feature importance analysis identified Mean Per.PSA.B6–B8 and Mean Per.Slop.B6–B8 as highly predictive variables, whereas pre-tetanic measures (Mean Per.PSA.B3–B4 and Mean Per.Slop.B3–B4) contributed minimally and were excluded. Likewise, high-intensity stimulation features (Mean PSA600–1000 and Mean Slop600–1000) demonstrated more substantial predictive value compared to low-intensity counterparts (<600 μA), supporting their retention in the optimized protocol. Correlation analysis confirmed these findings by highlighting redundancy among low-importance features.
Conclusions: The integration of feature importance metrics with correlation-based filtering enabled the identification of key electrophysiological markers while eliminating redundant variables from the LTP protocol. This optimization enhanced the accuracy, stability, and interpretability of machine learning models, while simultaneously reducing experimental costs, duration, and data collection requirements. Dimensionality reduction further improved computational efficiency and predictive performance, particularly in complex architectures.
Significance: This study introduces the first evidence-based, machine learning–guided protocol optimization framework in Alzheimer’s research, bridging computational intelligence with neurophysiological modeling to accelerate translational discovery.
 
Full-Text [PDF 367 kb]   (21 Downloads)    
Educational: Research | Subject: General
Received: 2025/10/5 | Accepted: 2025/10/11 | Published: 2025/12/14

References
1. Zhang X. Melanoma segmentation based on deep learning. Comput Assist Surg (Abingdon). 2017;22(sup1):267-77. [DOI:10.1080/24699322.2017.1389405] [PMID]
2. Tran GS, Nghiem TP, Nguyen VT, Luong CM, Burie JC. Improving Accuracy of Lung Nodule Classification Using Deep Learning with Focal Loss. J Healthc Eng. 2019;2019:5156416. [DOI:10.1155/2019/5156416] [PMID] []
3. Geras KJ, Wolfson S, Shen Y, Wu N, Kim S, Kim E, et al. High-resolution breast cancer screening with multi-view deep convolutional neural networks. arXiv preprint arXiv:170307047. 2017.
4. Umehara K, Ota J, Ishida T. Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT. J Digit Imaging. 2018;31(4):441-50. [DOI:10.1007/s10278-017-0033-z] [PMID] []
5. Romero-Lopez A, Giró Nieto X, Burdick J, Marques O, editors. Skin lesion classification from dermoscopic images using deep learning techniques. 13th IASTED International Conference on Biomedical Engineering; 2017: ACTA Press. [DOI:10.2316/P.2017.852-053]
6. Yang W, Zhang X, Tian Y, Wang W, Xue J-H, Liao Q. Deep Learning for Single Image Super-Resolution: A Brief Review. IEEE Transactions on Multimedia. 2019;21(12):3106-21. [DOI:10.1109/TMM.2019.2919431]
7. Ziwei L, Chengdong W, Dongyue C, Yuanchen Q, Wei C. Overview on image super resolution reconstruction. The 26th Chinese Control and Decision Conference (2014 CCDC)2014. p. 2009-14. [DOI:10.1109/CCDC.2014.6852498]
8. Zhao X, Zhang Y, Zhang T, Zou X. Channel Splitting Network for Single MR Image Super-Resolution. IEEE Trans Image Process. 2019;28(11):5649-62. [DOI:10.1109/TIP.2019.2921882] [PMID]
9. Xu W, Chen R, Huang B, Zhang X, Liu C. Single Image Super-Resolution Based on Global Dense Feature Fusion Convolutional Network. Sensors (Basel). 2019;19(2). [DOI:10.3390/s19020316] [PMID] []
10. Patterson J, Gibson A. Deep learning: A practitioner's approach: O'Reilly Media, Inc.; 2017.
11. Kumar N, Verma R, Sethi A. Convolutional neural networks for wavelet domain super resolution. Pattern Recognition Letters. 2017;90:65-71. [DOI:10.1016/j.patrec.2017.03.014]
12. Dong C, Loy CC, He K, Tang X. Learning a Deep Convolutional Network for Image Super-Resolution. Computer Vision - ECCV 2014. Lecture Notes in Computer Science2014. p. 184-99. [DOI:10.1007/978-3-319-10593-2_13]
13. Enkhtaivan G, Maria John KM, Pandurangan M, Hur JH, Leutou AS, Kim DH. Extreme effects of Seabuckthorn extracts on influenza viruses and human cancer cells and correlation between flavonol glycosides and biological activities of extracts. Saudi J Biol Sci. 2017;24(7):1646-56. [DOI:10.1016/j.sjbs.2016.01.004] [PMID] []
14. Kim J, Kwon Lee J, Mu Lee K, editors. Deeply-recursive convolutional network for image super-resolution. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. [DOI:10.1109/CVPR.2016.181] []
15. Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)2017. p. 105-14. [DOI:10.1109/CVPR.2017.19]
16. Tank VH, Ghosh R, Gupta V, Sheth N, Gordon S, He W, et al. Drug eluting stents versus bare metal stents for the treatment of extracranial vertebral artery disease: a meta-analysis. J Neurointerv Surg. 2016;8(8):770-4. [DOI:10.1136/neurintsurg-2015-011697] [PMID]
17. Freeman WT, Jones TR, Pasztor EC. Example-based super-resolution. IEEE Computer Graphics and Applications. 2002;22(2):56-65. [DOI:10.1109/38.988747]
18. Glasner D, Bagon S, Irani M. Super-resolution from a single image. 2009 IEEE 12th International Conference on Computer Vision2009. p. 349-56. [DOI:10.1109/ICCV.2009.5459271]
19. Zontak M, Irani M. Internal statistics of a single natural image. Cvpr 20112011. p. 977-84. [DOI:10.1109/CVPR.2011.5995401]
20. Timofte R, De Smet V, Van Gool L. A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution. Computer Vision -- ACCV 2014. Lecture Notes in Computer Science2015. p. 111-26. [DOI:10.1007/978-3-319-16817-3_8]
21. Yang M, Zhang L, Yang J, Zhang D. Metaface learning for sparse representation based face recognition. 2010 IEEE International Conference on Image Processing2010. p. 1601-4. [DOI:10.1109/ICIP.2010.5652363] []
22. Bevilacqua M, Roumy A, Guillemot C, Morel M-LA. Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding. British Machine Vision Conference (BMVC); United Kingdom2012. [DOI:10.5244/C.26.135]
23. Wang D, Lu H, Yang MH. Online object tracking with sparse prototypes. IEEE Trans Image Process. 2013;22(1):314-25. [DOI:10.1109/TIP.2012.2202677] [PMID]
24. Peleg T, Elad M. A statistical prediction model based on sparse representations for single image super-resolution. IEEE Trans Image Process. 2014;23(6):2569-82. [DOI:10.1109/TIP.2014.2305844] [PMID]
25. Sethi N, Sharma D. A novel method of image encryption using logistic mapping. International Journal of Computer Science Engineering. 2012;1(2):115-9.
26. Dong C, Loy CC, He K, Tang X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans Pattern Anal Mach Intell. 2016;38(2):295-307. [DOI:10.1109/TPAMI.2015.2439281] [PMID]
27. Mallat S. A wavelet tour of signal processing: Elsevier; 1999. [DOI:10.1016/B978-012466606-1/50008-8]
28. Crouse MS, Nowak RD, Baraniuk RG. Wavelet-based statistical signal processing using hidden Markov models. IEEE Transactions on Signal Processing. 1998;46(4):886-902. [DOI:10.1109/78.668544]
29. Romberg JK, Choi H, Baraniuk RG. Bayesian tree-structured image modeling using wavelet-domain hidden Markov models. IEEE Trans Image Process. 2001;10(7):1056-68. [DOI:10.1109/83.931100] [PMID]
30. Romberg JK, Choi H, Baraniuk RG, editors. Multiscale edge grammars for complex wavelet transforms. Proceedings 2001 International Conference on Image Processing (Cat No 01CH37205); 2001: IEEE.
31. Cafforio C. Edge enhancement for subband-coded images. Optical Engineering. 2001;40(5). [DOI:10.1117/1.1359208]
32. Ren H, El-Khamy M, Lee J. CT-SRCNN: Cascade Trained and Trimmed Deep Convolutional Neural Networks for Image Super Resolution. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV)2018. p. 1423-31. [DOI:10.1109/WACV.2018.00160]
33. Umehara K, Ota J, Ishida T. Super-Resolution Imaging of Mammograms Based on the Super-Resolution Convolutional Neural Network. Open Journal of Medical Imaging. 2017;07(04):180-95. [DOI:10.4236/ojmi.2017.74018]
34. Chalamala SR, Kakkirala KR, Bala Mallikarjuna RG. Analysis of wavelet and contourlet transform based image watermarking techniques. 2014 IEEE International Advance Computing Conference (IACC)2014. p. 1122-6. [DOI:10.1109/IAdCC.2014.6779483]
35. Kaviani HR, Karimi N, Samavi S. Robust Watermarking in Singular Values of Contourlet Coefficients. 2011 7th Iranian Conference on Machine Vision and Image Processing2011. p. 1-5. [DOI:10.1109/IranianMVIP.2011.6121618]
36. Dinghui Z, Haixia D, Chao Z. Researches on Digital Image Watermarking. 2007 8th International Conference on Electronic Measurement and Instruments2007. p. 2-818-2-21. [DOI:10.1109/ICEMI.2007.4350805]
37. Easley G, Labate D, Lim W-Q. Sparse directional image representations using the discrete shearlet transform. Applied and Computational Harmonic Analysis. 2008;25(1):25-46. [DOI:10.1016/j.acha.2007.09.003]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.