logo
Volume 22, Issue 1 (7-2025)                   ASWTR 2025, 22(1): 10-29 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shams S, Nasiri N, Nazemizadeh A, Haghdoost F, Hashemi S S, Tabaie S M, et al . New advances in responsive smart hydrogel dressings: A perspective for clinical improvement of diabetic wounds. ASWTR 2025; 22 (1) :10-29
URL: http://icml.ir/article-1-678-en.html
1Departmnt of Regenerative Medicine and Biotechnology in Wound Healing, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
Abstract:   (331 Views)
 The treatment of chronic and non-healing wounds in diabetic patients remains a major medical problem. Recent reports have shown that hydrogel wound dressings can be an effective strategy for the treatment of diabetic wounds due to their excellent hydrophilicity, good drug loading ability, and sustained drug release properties. However, the drug release and degradation behavior of hydrogel wound dressings used in the clinic cannot be tuned according to the wound microenvironment. Due to the complexity of diabetic wounds, antibiotics and other drugs are often combined with hydrogel dressings in clinical use. Researchers have developed responsive hydrogel dressings based on the characteristics of the diabetic wound microenvironment, such as high glucose and low pH, or in combination with external stimuli (such as light or magnetic field), to achieve controlled drug release, gel degradation, and microenvironment improvement, and overcome clinical problems. It is predicted that in the future, reactive hydrogel dressings will play an important role in diabetic wound healing dressings. In this review, recent advances in reactive hydrogel dressings for diabetic wound healing are reviewed, focusing on the hydrogel structure design, reactivity principle, and degradation behavior. Finally, the advantages and limitations of these reactive hydrogels in clinical applications are also discussed. It is hoped that this review will contribute to further progress in the field of hydrogels as improved dressings for diabetic wound healing and clinical application.
 
Full-Text [PDF 711 kb]   (83 Downloads)    
Educational: Review | Subject: General
Received: 2025/04/12 | Accepted: 2025/05/20 | Published: 2025/06/22

References
1. [1] A. Awasthi, M. Gulati, B. Kumar, J. Kaur, S. Vishwas, R. Khursheed, O. Porwal, A. Alam, A. Kr, L. Corrie, R. Kumar, A. Kumar, M. Kaushik, N.K. Jha, P.K. Gupta, D.K. Chellappan, G. Gupta, K. Dua, S. Gupta, R. Gundamaraju, P.V. Rao, S.K. Singh, Recent Progress in Development of Dressings Used for Diabetic Wounds with Special Emphasis on Scaffolds., Biomed Res. Int. 2022 (2022) 1659338. https://doi.org/10.1155/2022/1659338 [DOI:10.1155/2022/1659338.] [PMID] []
2. [2] M. Farahani, A. Shafiee, Wound Healing: From Passive to Smart Dressings., Adv. Healthc. Mater. 10 (2021) e2100477. https://doi.org/10.1002/adhm.202100477 [DOI:10.1002/adhm.202100477.] [PMID]
3. [3] Y. Wang, H.-Q. Lv, X. Chao, W.-X. Xu, Y. Liu, G.-X. Ling, P. Zhang, Multimodal therapy strategies based on hydrogels for the repair of spinal cord injury., Mil. Med. Res. 9 (2022) 16. https://doi.org/10.1186/s40779-022-00376-1 [DOI:10.1186/s40779-022-00376-1.] [PMID] []
4. [4] L. Zhou, T. Min, X. Bian, Y. Dong, P. Zhang, Y. Wen, Rational Design of Intelligent and Multifunctional Dressing to Promote Acute/Chronic Wound Healing., ACS Appl. Bio Mater. (2022). https://doi.org/10.1021/acsabm.2c00500 [DOI:10.1021/acsabm.2c00500.] [PMID]
5. [5] S. Matoori, A. Veves, D.J. Mooney, Advanced bandages for diabetic wound healing., Sci. Transl. Med. 13 (2021). https://doi.org/10.1126/scitranslmed.abe4839 [DOI:10.1126/scitranslmed.abe4839.] [PMID]
6. [6] S. Wu, Y. Yang, S. Wang, C. Dong, X. Zhang, R. Zhang, L. Yang, Dextran and peptide-based pH-sensitive hydrogel boosts healing process in multidrug-resistant bacteria-infected wounds., Carbohydr. Polym. 278 (2022) 118994. https://doi.org/10.1016/j.carbpol.2021.118994 [DOI:10.1016/j.carbpol.2021.118994.] [PMID]
7. [7] S. Wang, H. Zheng, L. Zhou, F. Cheng, Z. Liu, H. Zhang, L. Wang, Q. Zhang, Nanoenzyme-Reinforced Injectable Hydrogel for Healing Diabetic Wounds Infected with Multidrug Resistant Bacteria., Nano Lett. 20 (2020) 5149-5158. https://doi.org/10.1021/acs.nanolett.0c01371 [DOI:10.1021/acs.nanolett.0c01371.] [PMID]
8. [8] R. Zhao, H. Liang, E. Clarke, C. Jackson, M. Xue, Inflammation in Chronic Wounds., Int. J. Mol. Sci. 17 (2016). https://doi.org/10.3390/ijms17122085 [DOI:10.3390/ijms17122085.] [PMID] []
9. [9] F.M. Davis, A. Kimball, A. Boniakowski, K. Gallagher, Dysfunctional Wound Healing in Diabetic Foot Ulcers: New Crossroads., Curr. Diab. Rep. 18 (2018) 2. https://doi.org/10.1007/s11892-018-0970-z [DOI:10.1007/s11892-018-0970-z.] [PMID]
10. [10] A.E. Boniakowski, A.S. Kimball, B.N. Jacobs, S.L. Kunkel, K.A. Gallagher, Macrophage-Mediated Inflammation in Normal and Diabetic Wound Healing., J. Immunol. 199 (2017) 17-24. https://doi.org/10.4049/jimmunol.1700223 [DOI:10.4049/jimmunol.1700223.] [PMID]
11. [11] R.G. Rosique, M.J. Rosique, J.A. Farina Junior, Curbing Inflammation in Skin Wound Healing: A Review., Int. J. Inflam. 2015 (2015) 316235. https://doi.org/10.1155/2015/316235 [DOI:10.1155/2015/316235.] [PMID] []
12. [12] R.E. Mirza, M.M. Fang, E.M. Weinheimer-Haus, W.J. Ennis, T.J. Koh, Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice., Diabetes. 63 (2014) 1103-1114. https://doi.org/10.2337/db13-0927 [DOI:10.2337/db13-0927.] [PMID] []
13. [13] U.A. Okonkwo, L.A. DiPietro, Diabetes and Wound Angiogenesis., Int. J. Mol. Sci. 18 (2017). https://doi.org/10.3390/ijms18071419 [DOI:10.3390/ijms18071419.] [PMID] []
14. [14] J. Berlanga-Acosta, G.S. Schultz, E. López-Mola, G. Guillen-Nieto, M. García-Siverio, L. Herrera-Martínez, Glucose toxic effects on granulation tissue productive cells: the diabetics' impaired healing., Biomed Res. Int. 2013 (2013) 256043. https://doi.org/10.1155/2013/256043 [DOI:10.1155/2013/256043.] [PMID] []
15. [15] K.B. Narayanan, R. Bhaskar, Innovations in Designing Hydrogels for Advanced Wound Dressing Applications: An Editorial Review, Gels. 11 (2025) 4-9. https://doi.org/10.3390/gels11050332 [DOI:10.3390/gels11050332.] [PMID] []
16. [16] N. Dasari, A. Jiang, A. Skochdopole, J. Chung, E.M. Reece, J. Vorstenbosch, S. Winocour, Updates in Diabetic Wound Healing, Inflammation, and Scarring., Semin. Plast. Surg. 35 (2021) 153-158. https://doi.org/10.1055/s-0041-1731460 [DOI:10.1055/s-0041-1731460.] [PMID] []
17. [17] K. Ding, M. Liao, Y. Wang, J.R. Lu, Advances in Composite Stimuli-Responsive Hydrogels for Wound Healing: Mechanisms and Applications, Gels. 11 (2025) 420. https://doi.org/10.3390/gels11060420 [DOI:10.3390/gels11060420.] [PMID] []
18. [18] S. Tavakoli, A.S. Klar, Advanced Hydrogels as Wound Dressings., Biomolecules. 10 (2020). https://doi.org/10.3390/biom10081169 [DOI:10.3390/biom10081169.] [PMID] []
19. [19] S.F. Spampinato, G.I. Caruso, R. De Pasquale, M.A. Sortino, S. Merlo, The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs., Pharmaceuticals (Basel). 13 (2020). https://doi.org/10.3390/ph13040060 [DOI:10.3390/ph13040060.] [PMID] []
20. [20] Y. Hou, H. Huang, W. Gong, R. Wang, W. He, X. Wang, J. Hu, Co-assembling of natural drug-food homologous molecule into composite hydrogel for accelerating diabetic wound healing., Biomater. Adv. 140 (2022) 213034. https://doi.org/10.1016/j.bioadv.2022.213034 [DOI:10.1016/j.bioadv.2022.213034.] [PMID]
21. [21] A_novel_dual-adhesive_and_bioactive_hydrogel_activ.pdf, (n.d.).
22. [22] B. Balakrishnan, M. Mohanty, P.R. Umashankar, A. Jayakrishnan, Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin., Biomaterials. 26 (2005) 6335-6342. https://doi.org/10.1016/j.biomaterials.2005.04.012 [DOI:10.1016/j.biomaterials.2005.04.012.] [PMID]
23. [23] Y. Huang, L. Mu, X. Zhao, Y. Han, B. Guo, Bacterial Growth-Induced Tobramycin Smart Release Self-Healing Hydrogel for Pseudomonas aeruginosa-Infected Burn Wound Healing., ACS Nano. 16 (2022) 13022-13036. https://doi.org/10.1021/acsnano.2c05557 [DOI:10.1021/acsnano.2c05557.] [PMID]
24. [24] C. Guo, Y. Wu, W. Li, Y. Wang, Q. Kong, Development of a Microenvironment-Responsive Hydrogel Promoting Chronically Infected Diabetic Wound Healing through Sequential Hemostatic, Antibacterial, and Angiogenic Activities, ACS Appl. Mater. Interfaces. 14 (2022) 30480-30492. https://doi.org/10.1021/acsami.2c02725 [DOI:10.1021/acsami.2c02725.] [PMID]
25. [25] Y. Wu, Y. Wang, L. Long, C. Hu, Q. Kong, Y. Wang, A spatiotemporal release platform based on pH/ROS stimuli-responsive hydrogel in wound repairing., J. Control. Release Off. J. Control. Release Soc. 341 (2022) 147-165. https://doi.org/10.1016/j.jconrel.2021.11.027 [DOI:10.1016/j.jconrel.2021.11.027.] [PMID]
26. [26] J.-J. Ye, L.-F. Li, R.-N. Hao, M. Gong, T. Wang, J. Song, Q.-H. Meng, N.-N. Zhao, F.-J. Xu, Y. Lvov, L.-Q. Zhang, J.-J. Xue, Phase-change composite filled natural nanotubes in hydrogel promote wound healing under photothermally triggered drug release., Bioact. Mater. 21 (2023) 284-298. https://doi.org/10.1016/j.bioactmat.2022.08.026 [DOI:10.1016/j.bioactmat.2022.08.026.] [PMID] []
27. [27] Y. Chen, X. Wang, S. Tao, Q. Wang, P.Q. Ma, Z.B. Li, Y.L. Wu, D.W. Li, Research advances in smart responsive-hydrogel dressings with potential clinical diabetic wound healing properties, Mil. Med. Res. 10 (2023) 1-24. https://doi.org/10.1186/s40779-023-00473-9 [DOI:10.1186/s40779-023-00473-9.] [PMID] []
28. [28] Z. Li, Y. Zhao, H. Liu, M. Ren, Z. Wang, X. Wang, H. Liu, YubinFeng, Q. Lin, C. Wang, J. Wang, pH-responsive hydrogel loaded with insulin as a bioactive dressing for enhancing diabetic wound healing, Mater. Des. 210 (2021) 110104. https://doi.org/10.1016/j.matdes.2021.110104 [DOI:10.1016/j.matdes.2021.110104.]
29. [29] C. Hu, L. Long, J. Cao, S. Zhang, Y. Wang, Dual-crosslinked mussel-inspired smart hydrogels with enhanced antibacterial and angiogenic properties for chronic infected diabetic wound treatment via pH-responsive quick cargo release, Chem. Eng. J. 411 (2021) 128564. https://doi.org/10.1016/j.cej.2021.128564 [DOI:https://doi.org/10.1016/j.cej.2021.128564.]
30. [30] Z. Zhao, H. Cui, H. Cui, Correction : Decoding tissue complexity : multiscale mapping of chemistry - structure -, (2025) 400044. https://doi.org/10.1039/D5TB90124C [DOI:10.1039/d5tb90124c.] [PMID]
31. [31] T. Wang, Y. Zheng, Y. Shi, L. Zhao, pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity., Drug Deliv. Transl. Res. 9 (2019) 227-239. https://doi.org/10.1007/s13346-018-00609-8 [DOI:10.1007/s13346-018-00609-8.] [PMID]
32. [32] Z. Ni, H. Yu, li Wang, Y. Huang, H. lu, H. Zhou, Q. Liu, Multistage ROS-Responsive and Natural Polyphenol-Driven Prodrug Hydrogels for Diabetic Wound Healing, ACS Appl. Mater. Interfaces. 14 (2022). https://doi.org/10.1021/acsami.2c15686 [DOI:10.1021/acsami.2c15686.] [PMID]
33. [33] T. Jiang, S. Liu, Z. Wu, Q. Li, S. Ren, J. Chen, X. Xu, C. Wang, C. Lu, X. Yang, Z. Chen, ADSC-exo@MMP-PEG smart hydrogel promotes diabetic wound healing by optimizing cellular functions and relieving oxidative stress, Mater. Today Bio. 16 (2022) 100365. https://doi.org/10.1016/j.mtbio.2022.100365 [DOI:https://doi.org/10.1016/j.mtbio.2022.100365.] [PMID] []
34. [34] J. Sonamuthu, Y. Cai, H. Liu, M.S.M. Kasim, V.R. Vasanthakumar, B. Pandi, H. Wang, J. Yao, MMP-9 responsive dipeptide-tempted natural protein hydrogel-based wound dressings for accelerated healing action of infected diabetic wound., Int. J. Biol. Macromol. 153 (2020) 1058-1069. https://doi.org/10.1016/j.ijbiomac.2019.10.236 [DOI:10.1016/j.ijbiomac.2019.10.236.] [PMID]
35. [35] Z. Guo, H. Liu, Z. Shi, L. Lin, Y. Li, M. Wang, G. Pan, Y. Lei, L. Xue, Responsive hydrogel-based microneedle dressing for diabetic wound healing, J. Mater. Chem. B. 10 (2022) 3501-3511. https://doi.org/10.1039/D2TB00126H [DOI:10.1039/D2TB00126H.] [PMID]
36. [36] J. Yang, W. Zeng, P. Xu, X. Fu, X. Yu, L. Chen, F. Leng, C. Yu, Z. Yang, Glucose-responsive multifunctional metal-organic drug-loaded hydrogel for diabetic wound healing., Acta Biomater. 140 (2022) 206-218. https://doi.org/10.1016/j.actbio.2021.11.043 [DOI:10.1016/j.actbio.2021.11.043.] [PMID]
37. [37] L. Zhao, L. Niu, H. Liang, H. Tan, C. Liu, F. Zhu, pH and Glucose Dual-Responsive Injectable Hydrogels with Insulin and Fibroblasts as Bioactive Dressings for Diabetic Wound Healing., ACS Appl. Mater. Interfaces. 9 (2017) 37563-37574. https://doi.org/10.1021/acsami.7b09395 [DOI:10.1021/acsami.7b09395.] [PMID]
38. [38] Y. Liang, M. Li, Y. Yang, L. Qiao, H. Xu, B. Guo, pH/Glucose Dual Responsive Metformin Release Hydrogel Dressings with Adhesion and Self-Healing via Dual-Dynamic Bonding for Athletic Diabetic Foot Wound Healing., ACS Nano. 16 (2022) 3194-3207. https://doi.org/10.1021/acsnano.1c11040 [DOI:10.1021/acsnano.1c11040.] [PMID]
39. [39] H. Haidari, K. Vasilev, A.J. Cowin, Z. Kopecki, Bacteria-Activated Dual pH- and Temperature-Responsive Hydrogel for Targeted Elimination of Infection and Improved Wound Healing., ACS Appl. Mater. Interfaces. 14 (2022) 51744-51762. https://doi.org/10.1021/acsami.2c15659 [DOI:10.1021/acsami.2c15659.] [PMID]
40. [40] C. Wang, M. Wang, T. Xu, X. Zhang, C. Lin, W. Gao, H. Xu, B. Lei, C. Mao, Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration., Theranostics. 9 (2019) 65-76. https://doi.org/10.7150/thno.29766 [DOI:10.7150/thno.29766.] [PMID] []
41. [41] X. Yang, C. Zhang, D. Deng, Y. Gu, H. Wang, Q. Zhong, Multiple Stimuli-Responsive MXene-Based Hydrogel as Intelligent Drug Delivery Carriers for Deep Chronic Wound Healing., Small. 18 (2022) e2104368. https://doi.org/10.1002/smll.202104368 [DOI:10.1002/smll.202104368.] [PMID]
42. [42] J. Liu, Z. Chen, J. Wang, R. Li, T. Li, M. Chang, F. Yan, Y. Wang, Encapsulation of Curcumin Nanoparticles with MMP9-Responsive and Thermos-Sensitive Hydrogel Improves Diabetic Wound Healing., ACS Appl. Mater. Interfaces. 10 (2018) 16315-16326. https://doi.org/10.1021/acsami.8b03868 [DOI:10.1021/acsami.8b03868.] [PMID]
43. [43] J. Lim, S. Goh, X.J. Loh, Bottom-Up Engineering of Responsive Hydrogel Materials for Molecular Detection and Biosensing, ACS Mater. Lett. XXXX (2020). https://doi.org/10.1021/acsmaterialslett.0c00204 [DOI:10.1021/acsmaterialslett.0c00204.]
44. [44] R. Yin, M. Bai, J. He, J. Nie, W. Zhang, Concanavalin A-sugar affinity based system: Binding interactions, principle of glucose-responsiveness, and modulated insulin release for diabetes care., Int. J. Biol. Macromol. 124 (2019) 724-732. https://doi.org/10.1016/j.ijbiomac.2018.11.261 [DOI:10.1016/j.ijbiomac.2018.11.261.] [PMID]
45. [45] R. Yin, Z. Tong, D. Yang, J. Nie, Glucose-responsive insulin delivery microhydrogels from methacrylated dextran/concanavalin A: preparation and in vitro release study., Carbohydr. Polym. 89 (2012) 117-123. https://doi.org/10.1016/j.carbpol.2012.02.059 [DOI:10.1016/j.carbpol.2012.02.059.] [PMID]
46. [46] L.A. Wallace, L. Gwynne, T. Jenkins, Challenges and opportunities of pH in chronic wounds., Ther. Deliv. 10 (2019) 719-735. https://doi.org/10.4155/tde-2019-0066 [DOI:10.4155/tde-2019-0066.] [PMID]
47. [47] S. Schreml, R.-M. Szeimies, S. Karrer, J. Heinlin, M. Landthaler, P. Babilas, The impact of the pH value on skin integrity and cutaneous wound healing., J. Eur. Acad. Dermatol. Venereol. 24 (2010) 373-378. https://doi.org/10.1111/j.1468-3083.2009.03413.x [DOI:10.1111/j.1468-3083.2009.03413.x.] [PMID]
48. [48] M. Lee, S.H. Han, W.J. Choi, K.H. Chung, J.W. Lee, Hyaluronic acid dressing (Healoderm) in the treatment of diabetic foot ulcer: A prospective, randomized, placebo-controlled, single-center study., Wound Repair Regen. Off. Publ. Wound Heal. Soc. [and] Eur. Tissue Repair Soc. 24 (2016) 581-588. https://doi.org/10.1111/wrr.12428 [DOI:10.1111/wrr.12428.] [PMID]
49. [49] H. Zhao, J. Huang, Y. Li, X. Lv, H. Zhou, H. Wang, Y. Xu, C. Wang, J. Wang, Z. Liu, ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds, Biomaterials. 258 (2020) 120286. https://doi.org/10.1016/j.biomaterials.2020.120286 [DOI:https://doi.org/10.1016/j.biomaterials.2020.120286.] [PMID]
50. [50] L. Min, M. Liu, L. Liu, Z. Rao, C. Zhu, L. Fan, Enzymatic synthesis of quaternary ammonium chitosan-silk fibroin peptide copolymer and its characterization., Int. J. Biol. Macromol. 109 (2018) 1125-1131. https://doi.org/10.1016/j.ijbiomac.2017.11.108 [DOI:10.1016/j.ijbiomac.2017.11.108.] [PMID]
51. [51] W. Pan, X. Qi, Y. Xiang, S. You, E. Cai, T. Gao, X. Tong, R. Hu, J. Shen, H. Deng, Facile formation of injectable quaternized chitosan/tannic acid hydrogels with antibacterial and ROS scavenging capabilities for diabetic wound healing., Int. J. Biol. Macromol. 195 (2022) 190-197. https://doi.org/10.1016/j.ijbiomac.2021.12.007 [DOI:10.1016/j.ijbiomac.2021.12.007.] [PMID]
52. [52] Y. Qian, Y. Zheng, J. Jin, X. Wu, K. Xu, M. Dai, Q. Niu, H. Zheng, X. He, J. Shen, Immunoregulation in Diabetic Wound Repair with a Photoenhanced Glycyrrhizic Acid Hydrogel Scaffold., Adv. Mater. 34 (2022) e2200521. https://doi.org/10.1002/adma.202200521 [DOI:10.1002/adma.202200521.] [PMID]
53. [53] Y.-H. Lin, Y.-C. Chen, K.-S. Cheng, P.-J. Yu, J.-L. Wang, N.-Y. Ko, Higher Periwound Temperature Associated with Wound Healing of Pressure Ulcers Detected by Infrared Thermography., J. Clin. Med. 10 (2021). https://doi.org/10.3390/jcm10132883 [DOI:10.3390/jcm10132883.] [PMID] []
54. [54] M. Fierheller, R.G. Sibbald, A clinical investigation into the relationship between increased periwound skin temperature and local wound infection in patients with chronic leg ulcers., Adv. Skin Wound Care. 23 (2010) 361-369. https://doi.org/10.1097/01.ASW.0000383197.28192.98 [DOI:10.1097/01.ASW.0000383197.28192.98.] [PMID]
55. [55] S. Heilmann, S. Küchler, C. Wischke, A. Lendlein, C. Stein, M. Schäfer-Korting, A thermosensitive morphine-containing hydrogel for the treatment of large-scale skin wounds., Int. J. Pharm. 444 (2013) 96-102. https://doi.org/10.1016/j.ijpharm.2013.01.027 [DOI:10.1016/j.ijpharm.2013.01.027.] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.