1. Sadeghi, E., Mahmoodian, Z., & Zahedifar, M. (2019). Synthesis of nanoparticles of ZnS: Ag-L-cysteine-protoporphyrin IX conjugates and investigation its potential of reactive oxygen species production. Journal of fluorescence, 29, 1089-1101. [
DOI:10.1007/s10895-019-02420-1] [
PMID]
2. Ge, J., Lan, M., Zhou, B., Liu, W., Guo, L., Wang, H., ... & Han, X. (2014). A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nature communications, 5(1), 4596. [
DOI:10.1038/ncomms5596] [
PMID] [
]
3. Wu, F., Yue, L., Su, H., Wang, K., Yang, L., & Zhu, X. (2018). Carbon dots platinum porphyrin composite as theranostic nanoagent for efficient photodynamic cancer therapy. Nanoscale research letters, 13, 1-10. [
DOI:10.1186/s11671-018-2761-5] [
PMID] [
]
4. Zahedifar, M., Sadeghi, E., Shanei, M. M., Sazgarnia, A., & Mehrabi, M. (2016). Afterglow properties of CaF2: Tm nanoparticles and its potential application in photodynamic therapy. Journal of Luminescence, 171, 254-258. [
DOI:10.1016/j.jlumin.2015.11.043]
5. Du, D., Wang, K., Wen, Y., Li, Y., & Li, Y. Y. (2016). Photodynamic graphene quantum dot: reduction condition regulated photoactivity and size dependent efficacy. ACS applied materials & interfaces, 8(5), 3287-3294. [
DOI:10.1021/acsami.5b11154] [
PMID]
6. Huis in 't Veld, R. V., Heuts, J., Ma, S., Cruz, L. J., Ossendorp, F. A., & Jager, M. J. (2023). Current challenges and opportunities of photodynamic therapy against cancer. Pharmaceutics, 15(2), 330. [
DOI:10.3390/pharmaceutics15020330] [
PMID] [
]
7. Lucky, S. S., Soo, K. C., & Zhang, Y. (2015). Nanoparticles in photodynamic therapy. Chemical reviews, 115(4), 1990-2042. [
DOI:10.1021/cr5004198] [
PMID]
8. Huang, Z. (2005). A review of progress in clinical photodynamic therapy. Technology in cancer research & treatment, 4(3), 283-293. [
DOI:10.1177/153303460500400308] [
PMID] [
]
9. Saraiva, A. L., Vieira, T. N., Notário, A. F. O., Luiz, J. P. M., Silva, C. R., Goulart, L. R., ... & Espindola, F. S. (2022). CdSe magic-sized quantum dots attenuate reactive oxygen species generated by neutrophils and macrophages with implications in experimental arthritis. Nanomedicine: Nanotechnology, Biology and Medicine, 42, 102539. [
DOI:10.1016/j.nano.2022.102539] [
PMID]
10. Markovic, Z. M., Ristic, B. Z., Arsikin, K. M., Klisic, D. G., Harhaji-Trajkovic, L. M., Todorovic-Markovic, B. M., ... & Trajkovic, V. S. (2012). Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials, 33(29), 7084-7092. [
DOI:10.1016/j.biomaterials.2012.06.060] [
PMID]
11. Kumar, P., Dhand, C., Dwivedi, N., Singh, S., Khan, R., Verma, S., ... & Srivastava, A. K. (2022). Graphene quantum dots: A contemporary perspective on scope, opportunities, and sustainability. Renewable and Sustainable Energy Reviews, 157, 111993. [
DOI:10.1016/j.rser.2021.111993]
12. Zhang, Z., Zhang, J., Chen, N., & Qu, L. (2012). Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy & Environmental Science, 5(10), 8869-8890. [
DOI:10.1039/c2ee22982j]
13. Li, L., Wu, G., Yang, G., Peng, J., Zhao, J., & Zhu, J. J. (2013). Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 5(10), 4015-4039. [
DOI:10.1039/c3nr33849e] [
PMID]
14. Nozaki, T., Kakuda, T., Pottathara, Y. B., & Kawasaki, H. (2019). A nanocomposite of N-doped carbon dots with gold nanoparticles for visible light active photosensitisers. Photochemical & Photobiological Sciences, 18, 1235-1241. [
DOI:10.1039/c9pp00035f] [
PMID]
15. Li, L. L., Ji, J., Fei, R., Wang, C. Z., Lu, Q., Zhang, J. R., ... & Zhu, J. J. (2012). A facile microwave avenue to electrochemiluminescent two‐color graphene quantum dots. Advanced Functional Materials, 22(14), 2971-2979. [
DOI:10.1002/adfm.201200166]
16. Shafaee, M., Goharshadi, E. K., Mashreghi, M., & Sadeghinia, M. (2018). TiO2 nanoparticles and TiO2 graphene quantum dots nancomposites as effective visible/solar light photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 357, 90-102. [
DOI:10.1016/j.jphotochem.2018.02.019]
17. Sun, X., Li, H. J., Ou, N., Lyu, B., Gui, B., Tian, S., ... & Yang, J. (2019). Visible-light driven TiO2 photocatalyst coated with graphene quantum dots of tunable nitrogen doping. Molecules, 24(2), 344. [
DOI:10.3390/molecules24020344] [
PMID] [
]
18. Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., & Dai, H. (2008). Nano-graphene oxide for cellular imaging and drug delivery. Nano research, 1, 203-212. [
DOI:10.1007/s12274-008-8021-8] [
PMID] [
]
19. Luo, Z., Vora, P. M., Mele, E. J., Johnson, A. T., & Kikkawa, J. M. (2009). Photoluminescence and band gap modulation in graphene oxide. Applied physics letters, 94(11). [
DOI:10.1063/1.3098358]
20. Peter, I. J., Rajamanickam, N., Vijaya, S., Anandan, S., Ramachandran, K., & Nithiananthi, P. (2020). TiO2/Graphene Quantum Dots core-shell based photo anodes with TTIP treatment-A perspective way of enhancing the short circuit current. Solar Energy Materials and Solar Cells, 205, 110239. [
DOI:10.1016/j.solmat.2019.110239]
21. Mojgan, R., Ehsan, S., & Mostafa, Z. (2024). High photoluminescence and afterglow emission of nitrogen-doped graphene quantum dots/TiO2 nanocomposite for use as a photodynamic therapy photosensitizer. Applied Physics A, 130(3), 144. [
DOI:10.1007/s00339-024-07305-0]
22. Roeinfard, M., Zahedifar, M., Darroudi, M., Khorsand Zak, A., & Sadeghi, E. (2021). Synthesis of graphene quantum dots decorated with Se, Eu and Ag as photosensitizer and study of their potential to use in photodynamic therapy. Journal of Fluorescence, 31, 551-557. [
DOI:10.1007/s10895-020-02674-0] [
PMID]
23. Tavakkoli, F., Zahedifar, M., & Sadeghi, E. (2018). Effect of LaF3: Ag fluorescent nanoparticles on photodynamic efficiency and cytotoxicity of Protoporphyrin IX photosensitizer. Photodiagnosis and photodynamic therapy, 21, 306-311. [
DOI:10.1016/j.pdpdt.2018.01.009] [
PMID]
24. Dejpasand, M. T., Saievar-Iranizad, E., Bayat, A., Montaghemi, A., & Ardekani, S. R. (2020). Tuning HOMO and LUMO of three region (UV, Vis and IR) photoluminescent nitrogen doped graphene quantum dots for photodegradation of methylene blue. Materials Research Bulletin, 128, 110886. [
DOI:10.1016/j.materresbull.2020.110886]
25. Wei, B., Dong, F., Yang, W., Luo, C., Dong, Q., Zhou, Z., ... & Sheng, L. (2020). Synthesis of carbon-dots, SiO2, TiO2 nanoplatform for photothermal imaging induced multimodal synergistic antitumor. Journal of Advanced Research, 23, 13-23. [
DOI:10.1016/j.jare.2020.01.011] [
PMID] [
]
26. Van Tam, T., Trung, N. B., Kim, H. R., Chung, J. S., & Choi, W. M. (2014). One-pot synthesis of N-doped graphene quantum dots as a fluorescent sensing platform for Fe3+ ions detection. Sensors and Actuators B: Chemical, 202, 568-573. [
DOI:10.1016/j.snb.2014.05.045]