logo
Volume 22, Issue 1 (7-2025)                   ASWTR 2025, 22(1): 2-9 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rostami M, Sadeghi E, Zahedifar M. Fabrication, structure, and optical properties of graphene quantum dots and investigation of their possibility of use as a photosensitizer in cancer treatment using photodynamic therapy. ASWTR 2025; 22 (1) :2-9
URL: http://icml.ir/article-1-677-en.html
Abstract:   (330 Views)
This study aims to synthesize nitrogen-doped graphene quantum dot (N-GQD) nanostructures through a simple and cost-effective method capable of generating reactive oxygen species (ROS) under light irradiation, making them promising photosensitizers for photodynamic therapy (PDT).
Introduction:
Photodynamic therapy (PDT) is an emerging approach to enhance the effectiveness of medical treatments, particularly in oncology. Various materials have been proposed as photosensitizers for PDT. This study investigates the potential of nitrogen-doped graphene quantum dots (N-GQDs) as photosensitizers for cancer therapy using photodynamic mechanisms.
Materials and Methods:
Nitrogen-doped graphene quantum dots were synthesized via a hydrothermal method using inexpensive precursors (citric acid and urea). The generation of reactive oxygen species, including singlet oxygen (^1O₂) and hydroxyl radicals (•OH), under visible light irradiation was evaluated. Anthracene and methylene blue were employed as chemical probes to detect singlet oxygen and hydroxyl radicals, respectively.
Results:
The results demonstrated that the reduction in the absorption intensity of methylene blue and anthracene in the presence of N-GQDs under visible light irradiation was significantly greater than that observed with undoped graphene quantum dots. This indicates enhanced production of singlet oxygen and hydroxyl radicals due to nitrogen doping. In contrast, no measurable decrease in the absorption intensity of anthracene and methylene blue was observed in the absence of light irradiation, suggesting that N-GQDs do not generate ROS in the dark — a property desirable for safe medical applications.
Conclusion:
Nitrogen-doped graphene quantum dots, capable of efficient reactive oxygen species generation under light while remaining non-toxic in the dark, represent promising photosensitizers for cancer treatment via photodynamic therapy.


 
Full-Text [PDF 692 kb]   (105 Downloads)    
Educational: Research | Subject: General
Received: 2025/04/28 | Accepted: 2025/05/31 | Published: 2025/06/22

References
1. Sadeghi, E., Mahmoodian, Z., & Zahedifar, M. (2019). Synthesis of nanoparticles of ZnS: Ag-L-cysteine-protoporphyrin IX conjugates and investigation its potential of reactive oxygen species production. Journal of fluorescence, 29, 1089-1101.‏ [DOI:10.1007/s10895-019-02420-1] [PMID]
2. Ge, J., Lan, M., Zhou, B., Liu, W., Guo, L., Wang, H., ... & Han, X. (2014). A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nature communications, 5(1), 4596.‏ [DOI:10.1038/ncomms5596] [PMID] []
3. Wu, F., Yue, L., Su, H., Wang, K., Yang, L., & Zhu, X. (2018). Carbon dots platinum porphyrin composite as theranostic nanoagent for efficient photodynamic cancer therapy. Nanoscale research letters, 13, 1-10.‏ [DOI:10.1186/s11671-018-2761-5] [PMID] []
4. Zahedifar, M., Sadeghi, E., Shanei, M. M., Sazgarnia, A., & Mehrabi, M. (2016). Afterglow properties of CaF2: Tm nanoparticles and its potential application in photodynamic therapy. Journal of Luminescence, 171, 254-258.‏ [DOI:10.1016/j.jlumin.2015.11.043]
5. Du, D., Wang, K., Wen, Y., Li, Y., & Li, Y. Y. (2016). Photodynamic graphene quantum dot: reduction condition regulated photoactivity and size dependent efficacy. ACS applied materials & interfaces, 8(5), 3287-3294.‏ [DOI:10.1021/acsami.5b11154] [PMID]
6. Huis in 't Veld, R. V., Heuts, J., Ma, S., Cruz, L. J., Ossendorp, F. A., & Jager, M. J. (2023). Current challenges and opportunities of photodynamic therapy against cancer. Pharmaceutics, 15(2), 330.‏ [DOI:10.3390/pharmaceutics15020330] [PMID] []
7. Lucky, S. S., Soo, K. C., & Zhang, Y. (2015). Nanoparticles in photodynamic therapy. Chemical reviews, 115(4), 1990-2042.‏ [DOI:10.1021/cr5004198] [PMID]
8. Huang, Z. (2005). A review of progress in clinical photodynamic therapy. Technology in cancer research & treatment, 4(3), 283-293.‏ [DOI:10.1177/153303460500400308] [PMID] []
9. Saraiva, A. L., Vieira, T. N., Notário, A. F. O., Luiz, J. P. M., Silva, C. R., Goulart, L. R., ... & Espindola, F. S. (2022). CdSe magic-sized quantum dots attenuate reactive oxygen species generated by neutrophils and macrophages with implications in experimental arthritis. Nanomedicine: Nanotechnology, Biology and Medicine, 42, 102539.‏ [DOI:10.1016/j.nano.2022.102539] [PMID]
10. Markovic, Z. M., Ristic, B. Z., Arsikin, K. M., Klisic, D. G., Harhaji-Trajkovic, L. M., Todorovic-Markovic, B. M., ... & Trajkovic, V. S. (2012). Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials, 33(29), 7084-7092.‏ [DOI:10.1016/j.biomaterials.2012.06.060] [PMID]
11. Kumar, P., Dhand, C., Dwivedi, N., Singh, S., Khan, R., Verma, S., ... & Srivastava, A. K. (2022). Graphene quantum dots: A contemporary perspective on scope, opportunities, and sustainability. Renewable and Sustainable Energy Reviews, 157, 111993.‏ [DOI:10.1016/j.rser.2021.111993]
12. Zhang, Z., Zhang, J., Chen, N., & Qu, L. (2012). Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy & Environmental Science, 5(10), 8869-8890.‏ [DOI:10.1039/c2ee22982j]
13. Li, L., Wu, G., Yang, G., Peng, J., Zhao, J., & Zhu, J. J. (2013). Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 5(10), 4015-4039.‏ [DOI:10.1039/c3nr33849e] [PMID]
14. Nozaki, T., Kakuda, T., Pottathara, Y. B., & Kawasaki, H. (2019). A nanocomposite of N-doped carbon dots with gold nanoparticles for visible light active photosensitisers. Photochemical & Photobiological Sciences, 18, 1235-1241.‏ [DOI:10.1039/c9pp00035f] [PMID]
15. Li, L. L., Ji, J., Fei, R., Wang, C. Z., Lu, Q., Zhang, J. R., ... & Zhu, J. J. (2012). A facile microwave avenue to electrochemiluminescent two‐color graphene quantum dots. Advanced Functional Materials, 22(14), 2971-2979.‏ [DOI:10.1002/adfm.201200166]
16. Shafaee, M., Goharshadi, E. K., Mashreghi, M., & Sadeghinia, M. (2018). TiO2 nanoparticles and TiO2 graphene quantum dots nancomposites as effective visible/solar light photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 357, 90-102.‏ [DOI:10.1016/j.jphotochem.2018.02.019]
17. Sun, X., Li, H. J., Ou, N., Lyu, B., Gui, B., Tian, S., ... & Yang, J. (2019). Visible-light driven TiO2 photocatalyst coated with graphene quantum dots of tunable nitrogen doping. Molecules, 24(2), 344.‏ [DOI:10.3390/molecules24020344] [PMID] []
18. Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., & Dai, H. (2008). Nano-graphene oxide for cellular imaging and drug delivery. Nano research, 1, 203-212.‏ [DOI:10.1007/s12274-008-8021-8] [PMID] []
19. Luo, Z., Vora, P. M., Mele, E. J., Johnson, A. T., & Kikkawa, J. M. (2009). Photoluminescence and band gap modulation in graphene oxide. Applied physics letters, 94(11).‏ [DOI:10.1063/1.3098358]
20. Peter, I. J., Rajamanickam, N., Vijaya, S., Anandan, S., Ramachandran, K., & Nithiananthi, P. (2020). TiO2/Graphene Quantum Dots core-shell based photo anodes with TTIP treatment-A perspective way of enhancing the short circuit current. Solar Energy Materials and Solar Cells, 205, 110239.‏ [DOI:10.1016/j.solmat.2019.110239]
21. Mojgan, R., Ehsan, S., & Mostafa, Z. (2024). High photoluminescence and afterglow emission of nitrogen-doped graphene quantum dots/TiO2 nanocomposite for use as a photodynamic therapy photosensitizer. Applied Physics A, 130(3), 144.‏ [DOI:10.1007/s00339-024-07305-0]
22. Roeinfard, M., Zahedifar, M., Darroudi, M., Khorsand Zak, A., & Sadeghi, E. (2021). Synthesis of graphene quantum dots decorated with Se, Eu and Ag as photosensitizer and study of their potential to use in photodynamic therapy. Journal of Fluorescence, 31, 551-557.‏ [DOI:10.1007/s10895-020-02674-0] [PMID]
23. Tavakkoli, F., Zahedifar, M., & Sadeghi, E. (2018). Effect of LaF3: Ag fluorescent nanoparticles on photodynamic efficiency and cytotoxicity of Protoporphyrin IX photosensitizer. Photodiagnosis and photodynamic therapy, 21, 306-311.‏ [DOI:10.1016/j.pdpdt.2018.01.009] [PMID]
24. Dejpasand, M. T., Saievar-Iranizad, E., Bayat, A., Montaghemi, A., & Ardekani, S. R. (2020). Tuning HOMO and LUMO of three region (UV, Vis and IR) photoluminescent nitrogen doped graphene quantum dots for photodegradation of methylene blue. Materials Research Bulletin, 128, 110886.‏ [DOI:10.1016/j.materresbull.2020.110886]
25. Wei, B., Dong, F., Yang, W., Luo, C., Dong, Q., Zhou, Z., ... & Sheng, L. (2020). Synthesis of carbon-dots, SiO2, TiO2 nanoplatform for photothermal imaging induced multimodal synergistic antitumor. Journal of Advanced Research, 23, 13-23.‏ [DOI:10.1016/j.jare.2020.01.011] [PMID] []
26. Van Tam, T., Trung, N. B., Kim, H. R., Chung, J. S., & Choi, W. M. (2014). One-pot synthesis of N-doped graphene quantum dots as a fluorescent sensing platform for Fe3+ ions detection. Sensors and Actuators B: Chemical, 202, 568-573.‏ [DOI:10.1016/j.snb.2014.05.045]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.