logo
Volume 22, Issue 2 (12-2025)                   ASWTR 2025, 22(2): 24-41 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Haghdoost F, Shams S, Habibi M, Fateh M, Totonchi M. Alginate-based Polymer Systems: New Technologies in Drug Delivery, Antibacterial Properties and Wound Dressings. ASWTR 2025; 22 (2) :24-41
URL: http://icml.ir/article-1-674-en.html
Department of Regenerative Medicine in Wound Healing, Medical Laser Research Centre, Yara Institute, ACECR, Tehran, Iran
Abstract:   (20 Views)
Introduction: Alginate-based polymer systems, as one of the new technologies in the field of medicine and pharmacy, play a prominent role in improving the performance of drug delivery, antibacterial properties and wound dressing. Alginate dressings have been introduced as a cornerstone in advanced wound care due to their exceptional biocompatibility, moisture retention and hemostatic properties. Recent innovations in alginate-based wound dressings include multifunctional biomaterials engineered to accelerate healing, reduce the risk of infection and increase patient comfort. This study reviews the latest advances in the technology of extraction/purification methods, properties and different forms of advanced alginate-based polymer systems.
Methods: These advances include the development of bioactive composite formulations, antimicrobial agents such as silver, growth factors and stimuli-responsive components that enable targeted and controlled therapeutic delivery. New approaches such as nanofibrous methods, smart hydrogels and 3D bioprinted structures enhance the functional and mechanical properties of dressings and facilitate sustained drug release and wound monitoring through integrated sensors.
Results: Studies have shown that alginate-based polymer systems can be better candidates for some of the desired biomedical applications.
Conclusions: This studies showed that alginate-based polymer systems such as hydrogels, scaffolds and microspheres are suitable choices for wound healing purposes compared to other reported materials.
Full-Text [PDF 1455 kb]   (17 Downloads)    
Educational: Review | Subject: General
Received: 2025/09/6 | Accepted: 2025/09/9 | Published: 2025/12/14

References
1. Mazurek L, Kus M, Jurak J, Rybka M, Kuczeriszka M, Stradczuk-Mazurek M, et al. Biomedical potential of alginate wound dressings - From preclinical studies to clinical applications: A review. Int J Biol Macromol. 2025;309(Pt 2):142908. [DOI:10.1016/j.ijbiomac.2025.142908] [PMID]
2. Hegde V, Uthappa UT, Altalhi T, Jung H-Y, Han SS, Kurkuri MD. Alginate based polymeric systems for drug delivery, antibacterial/microbial, and wound dressing applications. Materials Today Communications. 2022;33. [DOI:10.1016/j.mtcomm.2022.104813]
3. Ilgin P, Ozay H, Ozay O. Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier. Journal of Polymer Research. 2020;27(9). [DOI:10.1007/s10965-020-02231-0]
4. Li YE. Sustainable Biomass Materials for Biomedical Applications. ACS Biomater Sci Eng. 2019;5(5):2079-92. [DOI:10.1021/acsbiomaterials.8b01634] [PMID]
5. Gomez CG, Perez Lambrecht MV, Lozano JE, Rinaudo M, Villar MA. Influence of the extraction-purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera). Int J Biol Macromol. 2009;44(4):365-71. [DOI:10.1016/j.ijbiomac.2009.02.005] [PMID]
6. Pawar SN, Edgar KJ. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials. 2012;33(11):3279-305. [DOI:10.1016/j.biomaterials.2012.01.007] [PMID]
7. Okolie CL, Mason B, Mohan A, Pitts N, Udenigwe CC. Extraction technology impacts on the structure-function relationship between sodium alginate extracts and their in vitro prebiotic activity. Food Bioscience. 2020;37. [DOI:10.1016/j.fbio.2020.100672]
8. Torres ML, Fernandez JM, Dellatorre FG, Cortizo AM, Oberti TG. Purification of alginate improves its biocompatibility and eliminates cytotoxicity in matrix for bone tissue engineering. Algal Research. 2019;40. [DOI:10.1016/j.algal.2019.101499]
9. Charoensiddhi S, Conlon MA, Vuaran MS, Franco CMM, Zhang W. Impact of extraction processes on prebiotic potential of the brown seaweed Ecklonia radiata by in vitro human gut bacteria fermentation. Journal of Functional Foods. 2016;24:221-30. [DOI:10.1016/j.jff.2016.04.016]
10. Wang Y, Shen Z, Wang H, Song Z, Yu D, Li G, et al. Progress in Research on Metal Ion Crosslinking Alginate-Based Gels. Gels. 2024;11(1). [DOI:10.3390/gels11010016] [PMID] []
11. Donati I, Christensen BE. Alginate-metal cation interactions: Macromolecular approach. Carbohydr Polym. 2023;321:121280. [DOI:10.1016/j.carbpol.2023.121280] [PMID]
12. Aderibigbe BA, Buyana B. Alginate in Wound Dressings. Pharmaceutics. 2018;10(2). [DOI:10.3390/pharmaceutics10020042] [PMID] []
13. Rezvanian M, Amin M, Ng SF. Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing. Carbohydr Polym. 2016;137:295-304. [DOI:10.1016/j.carbpol.2015.10.091] [PMID]
14. Cai J, Chen X, Wang X, Tan Y, Ye D, Jia Y, et al. High-water-absorbing calcium alginate fibrous scaffold fabricated by microfluidic spinning for use in chronic wound dressings. RSC Adv. 2018;8(69):39463-9. [DOI:10.1039/C8RA06922K] [PMID] []
15. Kumar A, Sah DK, Rai Y, Yadav AK, Solanki PR, Ansari MS, et al. Granular Hemostatic Composite of Alginate, Calcium, and Zinc for Rapid and Effective Management of Post-Traumatic Hemorrhage. ACS Appl Mater Interfaces. 2024;16(8):10565-79. [DOI:10.1021/acsami.3c15048] [PMID]
16. Ponsen AC, Proust R, Soave S, Mercier-Nome F, Garcin I, Combettes L, et al. A new hemostatic agent composed of Zn(2+)-enriched Ca(2+) alginate activates vascular endothelial cells in vitro and promotes tissue repair in vivo. Bioact Mater. 2022;18:368-82. [DOI:10.1016/j.bioactmat.2022.01.049] [PMID] []
17. Birca AC, Gherasim O, Niculescu AG, Grumezescu AM, Vasile BS, Mihaiescu DE, et al. Infection-Free and Enhanced Wound Healing Potential of Alginate Gels Incorporating Silver and Tannylated Calcium Peroxide Nanoparticles. Int J Mol Sci. 2024;25(10). [DOI:10.3390/ijms25105196] [PMID] []
18. Kumar L, Brice J, Toberer L, Klein-Seetharaman J, Knauss D, Sarkar SK. Antimicrobial biopolymer formation from sodium alginate and algae extract using aminoglycosides. PLoS One. 2019;14(3):e0214411. [DOI:10.1371/journal.pone.0214411] [PMID] []
19. Li QQ, Xu D, Dong QW, Song XJ, Chen YB, Cui YL. Biomedical potentials of alginate via physical, chemical, and biological modifications. Int J Biol Macromol. 2024;277(Pt 4):134409. [DOI:10.1016/j.ijbiomac.2024.134409] [PMID]
20. Schmidt J, Lee MK, Ko E, Jeong JH, DiPietro LA, Kong H. Alginate Sulfates Mitigate Binding Kinetics of Proangiogenic Growth Factors with Receptors toward Revascularization. Mol Pharm. 2016;13(7):2148-54. [DOI:10.1021/acs.molpharmaceut.5b00905] [PMID] []
21. Barbu A, Neamtu B, Zahan M, Iancu GM, Bacila C, Miresan V. Current Trends in Advanced Alginate-Based Wound Dressings for Chronic Wounds. J Pers Med. 2021;11(9). [DOI:10.3390/jpm11090890] [PMID] []
22. Uthappa UT, Kurkuri MD, Kigga M. Nanotechnology Advances for the Development of Various Drug Carriers. Nanobiotechnology in Bioformulations. Nanotechnology in the Life Sciences2019. p. 187-224. [DOI:10.1007/978-3-030-17061-5_8]
23. Uthappa UT, Sriram G, Arvind OR, Kumar S, Ho Young J, Neelgund GM, et al. Engineering MIL-100(Fe) on 3D porous natural diatoms as a versatile high performing platform for controlled isoniazid drug release, Fenton's catalysis for malachite green dye degradation and environmental adsorbents for Pb2+ removal and dyes. Applied Surface Science. 2020;528. [DOI:10.1016/j.apsusc.2020.146974]
24. Uthappa UT, Sriram G, Brahmkhatri V, Kigga M, Jung H-Y, Altalhi T, et al. Xerogel modified diatomaceous earth microparticles for controlled drug release studies. New Journal of Chemistry. 2018;42(14):11964-71. [DOI:10.1039/C8NJ01238E]
25. Unagolla JM, Jayasuriya AC. Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur J Pharm Sci. 2018;114:199-209. [DOI:10.1016/j.ejps.2017.12.012] [PMID] []
26. De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine. 2008;3(2):133-49. [DOI:10.2147/IJN.S596] [PMID] []
27. Alasvand N, Urbanska AM, Rahmati M, Saeidifar M, Gungor-Ozkerim PS, Sefat F, et al. Therapeutic Nanoparticles for Targeted Delivery of Anticancer Drugs. Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics2017. p. 245-59. [DOI:10.1016/B978-0-323-52725-5.00013-7]
28. Das D, Pham HTT, Lee S, Noh I. Fabrication of alginate-based stimuli-responsive, non-cytotoxic, terpolymric semi-IPN hydrogel as a carrier for controlled release of bovine albumin serum and 5-amino salicylic acid. Mater Sci Eng C Mater Biol Appl. 2019;98:42-53. [DOI:10.1016/j.msec.2018.12.127] [PMID]
29. Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153(3):198-205. [DOI:10.1016/j.jconrel.2011.06.001] [PMID] []
30. Ibrahim OM, El-Deeb NM, Abbas H, Elmasry SM, El-Aassar MR. Alginate based tamoxifen/metal dual core-folate decorated shell: Nanocomposite targeted therapy for breast cancer via ROS-driven NF-kappaB pathway modulation. Int J Biol Macromol. 2020;146:119-31. [DOI:10.1016/j.ijbiomac.2019.12.266] [PMID]
31. Pei M, Jia X, Zhao X, Li J, Liu P. Alginate-based cancer-associated, stimuli-driven and turn-on theranostic prodrug nanogel for cancer detection and treatment. Carbohydr Polym. 2018;183:131-9. [DOI:10.1016/j.carbpol.2017.12.013] [PMID]
32. Uthappa UT, Kigga M, Sriram G, Ajeya KV, Jung H-Y, Neelgund GM, et al. Facile green synthetic approach of bio inspired polydopamine coated diatoms as a drug vehicle for controlled drug release and active catalyst for dye degradation. Microporous and Mesoporous Materials. 2019;288. [DOI:10.1016/j.micromeso.2019.109572]
33. He S, Meng Q, Zhong S, Gao Y, Cui X. Sonochemical fabrication of reduction-responsive alginate-based nanocapsules with folate targeting for drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022;639. [DOI:10.1016/j.colsurfa.2022.128349]
34. Hashim AF, Hamed SF, Abdel Hamid HA, Abd-Elsalam KA, Golonka I, Musial W, et al. Antioxidant and antibacterial activities of omega-3 rich oils/curcumin nanoemulsions loaded in chitosan and alginate-based microbeads. Int J Biol Macromol. 2019;140:682-96. [DOI:10.1016/j.ijbiomac.2019.08.085] [PMID]
35. Rafiq M, Hussain T, Abid S, Nazir A, Masood R. Development of sodium alginate/PVA antibacterial nanofibers by the incorporation of essential oils. Materials Research Express. 2018;5(3). [DOI:10.1088/2053-1591/aab0b4]
36. Sanmartín-Santos I, Gandía-Llop S, Salesa B, Martí M, Lillelund Aachmann F, Serrano-Aroca Á. Enhancement of Antimicrobial Activity of Alginate Films with a Low Amount of Carbon Nanofibers (0.1% w/w). Applied Sciences. 2021;11(5). [DOI:10.3390/app11052311]
37. Dhivya G, Deepika K, Kavitha J, Kumari VN. Enriched content mining for web applications. 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS)2015. p. 1-5. [DOI:10.1109/ICIIECS.2015.7193094]
38. Ma R, Wang Y, Qi H, Shi C, Wei G, Xiao L, et al. Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: In vitro and in vivo evaluation. Composites Part B: Engineering. 2019;167:396-405. [DOI:10.1016/j.compositesb.2019.03.006]
39. Zhao X, Liu L, An T, Xian M, Luckanagul JA, Su Z, et al. A hydrogen sulfide-releasing alginate dressing for effective wound healing. Acta Biomater. 2020;104:85-94. [DOI:10.1016/j.actbio.2019.12.032] [PMID]
40. Ehterami A, Salehi M, Farzamfar S, Samadian H, Vaez A, Sahrapeyma H, et al. A promising wound dressing based on alginate hydrogels containing vitamin D3 cross-linked by calcium carbonate/d-glucono-delta-lactone. Biomed Eng Lett. 2020;10(2):309-19. [DOI:10.1007/s13534-020-00155-8] [PMID] []
41. Bakhsheshi-Rad HR, Hadisi Z, Ismail AF, Aziz M, Akbari M, Berto F, et al. In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polymer Testing. 2020;82. [DOI:10.1016/j.polymertesting.2019.106298]
42. Ambrogi V, Pietrella D, Donnadio A, Latterini L, Di Michele A, Luffarelli I, et al. Biocompatible alginate silica supported silver nanoparticles composite films for wound dressing with antibiofilm activity. Mater Sci Eng C Mater Biol Appl. 2020;112:110863. [DOI:10.1016/j.msec.2020.110863] [PMID]
43. Wang T, Wang J, Wang R, Yuan P, Fan Z, Yang S. Preparation and properties of ZnO/sodium alginate bi-layered hydrogel films as novel wound dressings. New Journal of Chemistry. 2019;43(22):8684-93. [DOI:10.1039/C9NJ00402E]
44. Zhu Y, Yan Y, Zhang Y, Zhang Y. EHSO: Evolutionary Hybrid Sampling in overlapping scenarios for imbalanced learning. Neurocomputing. 2020;417:333-46. [DOI:10.1016/j.neucom.2020.08.060]
45. Gp R, Mr R. Strontium ion cross-linked alginate-g-poly (PEGMA) xerogels for wound healing applications: in vitro studies. Carbohydr Polym. 2021;251:117119. [DOI:10.1016/j.carbpol.2020.117119] [PMID]
46. Pakolpakçıl A, Osman B, Göktalay G, Özer ET, Şahan Y, Becerir B, et al. Design and in vivo evaluation of alginate-based pH-sensing electrospun wound dressing containing anthocyanins. Journal of Polymer Research. 2021;28(2). [DOI:10.1007/s10965-020-02400-1]
47. Diniz FR, Maia R, Rannier L, Andrade LN, M VC, da Silva CF, et al. Silver Nanoparticles-Composing Alginate/Gelatine Hydrogel Improves Wound Healing In Vivo. Nanomaterials (Basel). 2020;10(2). [DOI:10.3390/nano10020390] [PMID] []
48. Koehler J, Brandl FP, Goepferich AM. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal. 2018;100:1-11. [DOI:10.1016/j.eurpolymj.2017.12.046]
49. Rashaan ZM, Krijnen P, Kwa KAA, van der Vlies CH, Schipper IB, Breederveld RS. Flaminal(R) versus Flamazine(R) in the treatment of partial thickness burns: A randomized controlled trial on clinical effectiveness and scar quality (FLAM study). Wound Repair Regen. 2019;27(3):257-67. [DOI:10.1111/wrr.12699] [PMID] []
50. Reynolds T. A clinical evaluation of Algivon® Plus manuka honey dressings for chronic wounds2017.

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.