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خلاصه

 aPDI (antimicrobial ضدمیکروبــی  فتودینامیکــی  ســازی  غیرفعال​ مقدمــه: 
PhotoDynamic Inactivation( روشی امید​بخش برای از بین بردن باکتری​های مقاوم 
به آنتی​بیوتیک از​طریق تولید گونه​های فعال اکســیژن با ترکیب نور و حساســگر نوری است. 
تاکنون راه​های گوناگونی جهت افزایش نفوذپذیری غشــای باکتری​های گرم​منفی و درنتیجه 
افزایش اثربخشی aPDI بر آن​ها توسعه یافته است. کیتوزان، پلی​ساکارید خطی پلی​کاتیونی 
دارای قابلیت ایجاد از هم گســیختگی در ساختار غشای خارجی باکتری​های گرم​منفی است و 
می​تواند به​عنوان افزایش​دهندۀ پتانسیل حساسگر نوری مورد استفاده قرار گیرد. بنابراین هدف 
 ما در این مطالعه بررسی توانایی کیتوزان در بهبود و افزایش کارآیی aPDI به​واسطۀ متیلن​بلو

بر​روی سلول​های پلانکتونی و بیوفیلم باکتری Pseudomonas Aeruginosa بود.

 ،50 µM( روش بررســی: در محیط آزمایشــگاهی، اثر فتوتوکســیک متیلن​بلو به​تنهایی
 دوز نــوری J/cm2  47( و به​همــراه کیتــوزان )µg/ml 30( بر​روی 5 جدایۀ بیمارســتانی
P. aeruginosa مطالعه شــد. همچنین اثر فتوتوکســیک متیلن​بلو )µM 200( و کیتوزان 
)µg/ml 1000( با دوز نوری J/cm2  47 بر​روی بیوفیلم این جدایه​ها مورد بررسی قرار گرفت. 

 یافته​ها: میزان کشندگی aPDI به​واسطۀ متیلن​بلو کمتراز یک لگاریتم در تعداد باکتری​ها
در فــرم پلانکتونی و بیوفیلم بود در​حالیکه aPDI به​واســطۀ متیلن​بلــو و کیتوزان منجر به 

کاهش 2/5 و 5/15 لگاریتم در تعداد باکتری​ها به​ترتیب در فرم پلانکتونی و بیوفیلم شد.

نتیجه​گیری: یافته​های این مطالعه نشــان داد که کیتوزان سبب افزایش کارآیی aPDI به​
واسطۀ متیلن​بلو علیه باکتری P. aeruginosa در هر دو حالت پلانکتونی و بیوفیلم شد.

واژه​های کلیــدی:  غیرفعال​ســازی فتودینامیکــی ضدمیکروبــی، کارآیــی، کیتوزان، 
Pseudomonas Aeruginosa
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معصومه شهبازی و همـکاران           3

مقدمه
افزایش باکتری​های مقاوم بــه دارو در دنیا تهدیدی جدی برای درمان 
عفونت​های شــدید است. بنابراین، توسعۀ رویکردهای ضدمیکروبی جدید 
که غیرتهاجمی و غیر سمی و همچنین مؤثرتر و سریع​تر از آنتی​بیوتیک​ها 
 باشند، بسیار ضروری است. یک جایگزین امید​بخش برای آنتی​بیوتیک​های

فعلی، روش غیرفعال​سازی فتودینامیکی ضدمیکروبی )aPDI(  است]1[. 
در aPDI از اســترس اکســیداتیو که ناشــی از جذب نور مرئی توسط 
حساســگر نوری و تولید گونه​های اکسیژن فعال به​واسطۀ انتقال انرژی یا 

الکترون به اکسیژن است، استفاده می​شود]2و3[.

تغییرات ســاختاری در کلاس​های مختلف سلول​های میکروبی می​تواند 
بر اثربخشی و مکانیسم عمل aPDI بر بیماریزاهای مختلف تأثیر بگذارد. 
به​عنوان مثال باکتری​های گرم​مثبت دارای لایه​های پپتیدوگلیکان ضخیم 
و متخلخل هســتند که غشــاء سیتوپلاســمی را احاطه کرده​اند درحالی​
کــه باکتری​های گرم​منفی حاوی غشــای خارجی در اطــراف یک لایه 
پپتیدوگلیکان نازک هســتند وغشای سیتوپلاســمی درون باکتری قرار 
گرفته اســت]4و5[. برای انجام aPDI به​طور کارآمد، حساسگر نوری به 
نفوذ در )یا حداقل اتصال به( دیوارۀ سلولی باکتری​ها و رسیدن به غشای 
پلاسمایی یا سیتوپلاسم نیاز دارد با این حال، موانع غشایی سلول باکتری، 
انتشار سادۀ حساسگر نوری به داخل سیتوپلاسم باکتریایی را محدود می​
کنند]6 و7[. بنابراین aPDI درمورد باکتری​های گرم​مثبت بسیار ساده​تر 

از باکتری​های گرم​منفی انجام می​شود.

به​منظور افزایــش کارآیی aPDI در باکتری​های گرم​منفی، راهکارهای 
متفاوتی توسعه یافته است]8[. پیش​تیمار با عواملی که نفوذ​پذیری غشای 
 Bخارجی را افزایش می​دهند، مانند نانوذرات پلی​کاتیونی پلی​میکســین
]9[ و EDTA ]10[، می​تواندaPDI در گونه​های گرم​منفی را کارآمدتر 
کند. روش دومی که توســط چندین گروه پذیرفته شده است، استفاده از 
حساســگرهای نوری با بار مثبت اســت. بار مثبت به آن​ها کمک می​کند 
تا به باکتری​هایی که بار منفی دارند متصل شــوند]14-11[. اثر کیتوزان 
نیز بر کارآیی aPDI به​عنوان تقویت​کنندۀ پتانسیل حساسگرهای نوری 

مختلف مورد بررسی قرار گرفته است]15و16[. 

کیتــوزان یک پلی​ســاکارید خطی پلی​کاتیونی بــا وزن مولکولی بالا و 
  D-glucosamine  و N-acetyl-D-glucosamine متشــکل از
با اتصال β-1,4 اســت. خصوصیات کاتیونی کیتوزان منحصر​به​فرد است 
و ویژگی تشــکیل فیلم، ایمنی و ســازگاری بیولوژیک عالی سبب ایجاد 
کاربردهای جدید آن در زمینه​های دارویی و زیست​پزشــکی مانند التیام 

زخم، مهندسی بافت و رهایش دارو شده است]17و18[. 

کیتوزان علیه طیف وســیعی از میکروارگانیسم​ها فعالیت ضدمیکروبی 
دارد]19[. این فعالیت ضدمیکروبی به عوامل متعدد درونی و بیرونی مانند 

 ،pKa ،گونۀ میکروارگانیسم، وجود یا عدم وجود کاتيون​های فلزی ،pH
وزن مولکولی و درجۀ داستيلاســیون کيتوزان بستگی دارد]20[. توانایی 
کیتوزان در افزایش نفوذپذیری غشــای خارجی در باکتری​های گرم​منفی 

استفاده از آن را به​عنوان مادۀ ضدمیکروبی گسترش می​دهد]21[. 

Pseudomonas aeruginosa یکی از عوامل بیماری​زای بیمارستانی 
مشکل​آفرین در سراسر جهان است. درمان عفونت​های بیمارستانی ناشی 
از این ارگانیســم به علت مقاومت درونی گونه​ها )شــامل نفوذ​پذیری کم 
غشــاء خارجی همراه با بیان بتالاکتامــاز و پمپ​های دفع دارو( و توانایی 
فوق​العــادۀ آن در به​دســت آوردن مقاومــت به چندین گــروه از عوامل 
ضدمیکروبی، اغلب دشوار است]P. aeruginosa.]22  همچنین قادر به 
ایجاد عفونت​هــای بیوفیلمی مقاوم )از​جمله در ریۀ بیماران دارای فیبروز 
کیستیک( است]23[. ترکیبات ماتریکس بیوفیلم نقش مهمی در اجتناب 
از مکانیسم​های ایمنی بدن و توانایی حفاظت از باکتری​ها در مقابل آنتی​

  P. aeruginosaبیوتیک​ها ایفا می​کنند]24[. به​دلیل شدت عفونت​های
و محدودیت عوامل ضدمیکروبی برای درمان آن​ها پیدا کردن راه​های دیگر 
 جهت پیشــگیری و درمان حیاتی است. در ســال​های اخیر، گزارش​های
بســیاری در مورد اثربخشــی aPDI علیه P. aeruginosa منتشــر و 
مشخص شده اســت که P. aeruginosa قادر است استرس اکسیداتیو 
ناشــی از aPDI را تحمل کند]25-28[. در این باکتری، غشای بیرونی 
غیرقابل​نفوذ )که مانع از جذب رنگ توســط ســلول​ها می​شود(]5[، بیان 
پمپ MexAB-OprM ]29[، توانایی تولید رنگدانه​های محافظ]28[، 
همراه با توانایی پاسخ به استرس اکسیداتیو]30[ ممکن است در مقابله با 

استرس اکسیداتیو ناشی از aPDI کمک کند. 

 بنابراين در مطالعۀ حاضر، اثر کيتوزان بر کارآیی aPDI به​واسطۀ  متیلن​بلو
در P. aeruginosa در دو شکل پلانکتوني و بيوفيلم ارزيابي شد.

روش بررسی
جدایه​های باکتریایی و شرایط رشد

پنج جدایۀ P. aeruginosa از زخم​های حاد ســوختگی در پنج بیمار 
مختلف از بیمارستان سوانح و سوختگی شهید مطهری تهران دریافت شد. 
جدایه​ها با آزمون​های میکروبیولوژیکی و بیوشیمیایی شناسایی شدند]31[. 
 )Merck, Germany( جدایه​ها بر​روی محیط کشــت نوترینــت آگار
در دمای 37 درجۀ ســانتی​گراد برای 24-18 ســاعت رشد داده شدند. 

حساسگر نوری و منبع نور

متیلن​بلــو )Merck, Germany) (Methylene Blue: MB(، به​
 عنوان حساسگر نوری استفاده شد. محلول ذخیرۀ MB )200 میکرومولار(

در بافر فســفات )pH 7/2( تهیه و پس از عبــور از فیلتر 0/22 میکرون 
به​مدت 2 هفته در دمای 4 درجۀ ســانتی​گراد نگهداری می​شــد. محلول 
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ذخیره برای رسیدن به غلظت​های مورد نظر رقیق می​شد. 

منبع نــور، لیزر دیــود )MUSTANG-Russia( با طول​موج 650 
نانومتر و توان خروجی 30 میلی​وات بود.

سنجش تشکیل بیوفیلم با رنگ کریستال ویوله

 Tryptic( جدایه​ها به​مدت یک شــب در محیط تریپتیک سوی براث
Soy Broth: TSB( غنی​شــده با 0/2 درصــد گلوکز گرمخانه​گذاری و 
سپس با رقت 1:50 در محیط TSB تازه آماده شدند. 100 میکرولیتر از 
مایع تلقیح و 100 میکرولیتر  TSB تازه به هر چاهک در یک میکروتیتر 
پلیت 96 خانه اضافه شــد. میکروتیتر پلیت به​مدت 24 ساعت در دمای 
37 درجۀ سانتی​گراد گرمخانه​گذاری شد. پس از تشکیل بیوفیلم، محیط 
کشــت به آرامی تخلیه و هر چاهک توســط محلول استریل 0/9 درصد 
 کلرید سدیم  برای حذف سلول​های پلانکتونی شسته شد. سپس سلول​ها
با استفاده از اتانول 95 درصد به​مدت 10 دقیقه تثبیت و با رنگ کریستال  
ویولــه 0/4 درصد به​مدت 15 دقیقه رنگ​آمیزی شــدند. پس از چندین 
بار شستشــو، چاهک​ها در معرض هوا خشــک شدند. برای تخمین کمی 
تراکم بیوفیلم، کریستال ویولۀ وارد​شده به داخل بیوفیلم در اسید استیک 
10 درصد حل شــد و شــدت جذب رنگ حل​شــده در طول​موج 492 
)HiperionMPR4+,Germany( نانومتر توسط دستگاه پلیت​خوان 

اندازه​گیری گردید]32[. 

 Minimum Inhibitory( تعیین حداقل غلظت مهارکنندۀ رشــد
Concentration: MIC( و حداقــل غلظــت مهارکننــدۀ بیوفیلــم 
 )Minimum Biofilm Inhibition Concentration: MBIC(
بــرای کیتوزان بــا وزن مولکولی پاییــن )107 کیلو​دالتــون( با درجۀ 
داستیلاسیون 85-75 درصد از شرکت Sigma Aldrich خریداری شد. 
 کیتوزان در محلول اسید استیک )1 درصد V/V( در دمای اتاق به​مدت
یک شب با استفاده از همزن مغناطیسی حل شد تا غلظت نهایی 4000 
میکروگرم در میلی​لیتر )pH 5/5( به​دســت آید. محلول پس از عبور از 
فیلتر 0/22 میکرون، استریل و با کلرید سدیم 0/9 درصد استریل تا غلظت 
موردنظر رقیق شــد]33[. 5 میکرولیتر از هر سوسپانسیون باکتریایی در 
محلول 0/9 درصد کلرید سدیم )غلظت 0/5 مک​فارلند( و 95 میکرولیتر 
از محیط مولرهینتون بــراث به هر چاهک در میکروتیتر پلیت 96 خانه 
اضافه شــد و با 100 میکرولیتــر از محلول​های کیتوزان با غلظت نهایی 
 31 تــا  4000 میکرو​گــرم در میلی​لیتر تیمار گردیــد. MIC به​عنوان

پایین​ترین غلظت کیتوزان مورد نیاز برای توقف کامل رشــد باکتری​ها 
پس از انکوباســیون در دمای 37 درجۀ ســانتی​گراد در​مدت 24 ساعت 
تعریف شــد. به​منظور تعيين MBIC کيتــوزان، بيوفيلم باکتري همان​
طور که در بالا توصيف شــد، آماده گشــت و با محلول​هاي کيتوزان با 
غلظت​هاي نهايي 31 تا 4000 میکرو​گرم در میلی​لیتر تیمار شد و مورد 

ارزيابي قرار گرفت]34[. 

 غیرفعال​ســازی فتودینامیکــی ضدمیکروبــی جدایه​هــای
P. aeruginosa در شکل پلانکتونی

 )106 -107 CFU/ml( 100 میکرولیتر از هر سوسپانسیون باکتریایی
در میکروتیتــر پلیت 96 خانه ریخته شــد و بــا MB )غلظت نهایی 50 
میکرومــولار( و کیتوزان )غلظت نهایی 31 میکروگــرم در میلی​لیتر( در 
تاریکی و دمای 37 درجۀ ســانتی​گراد برای 5 دقیقه گرمخانه​گذاری شد. 
47 J/cm2 سپس هر سوسپانسیون باکتریایی در معرض  نور قرمز با شدت 

قرار گرفت. پس از آن 100 میکرولیتر از سوسپانســیون میکروبی بر​روی 
محیط نوترینت​آگار با ســری رقت​های 10 تایی پخش شد و کشت داده 
شــد. کلنی​ها پس از گرمخانه​گذاری در تاریکی به​مدت 24 ســاعت و در 
دمای 37 درجۀ ســانتی​گراد شمارش شدند. تمام آزمایش​ها در سه تکرار 
انجام شد. كنترل​ها شامل سوسپانسیون باكتريايي درون بافر فسفات و در 
تاریکی، سوسپانسیون باكتريايي كه با MB يا يكتوزان در تاریكی انكوبه 
شده بود )سميت در تاریکی و سميت يكتوزان( و سوسپانسيون باكتريایی 

که بدون MB در معرض نور قرار گرفتند )کنترل نور( بودند. 

 غیرفعال​ســازی فتودینامیکــی ضدمیکروبــی جدایه​هــای
P. aeruginosa در شکل بیوفیلم

 MB .بیوفیلم باکتریایی به​صورتی​که در بالا شرح داده شد، تشکیل شد
یــا MB + کیتوزان )به​ترتیب در غلظت​هــای نهایی 200 میکرومولار و 
1000 میکروگرم در میلی​لیتر( به هر چاهک اضافه شــد و پلیت در دمای 
 37 درجــۀ ســانتی​گراد و در تاریکی به​مدت 15 دقیقــه گرمخانه​گذاری
 شــد. ســپس چاهک​ها به​دقــت تخلیــه و بیوفیلم​ها شســته شــدند.
بیوفیلم​های تیمارشــده، با نور لیزر به​مدت 10 دقیقه )J/cm2 47( تابش 
شدند. بیوفیلم​ها کنده و نمونه​های همگن​شده به​صورت سریالی رقیق شدند 
 ســپس روی محیط نوترینت​آگار پخش و در دمای 37 درجۀ سانتی​گراد

در تاریکی به​مدت 24 ساعت گرمخانه​گذاری شدند. 

تحلیل آماری

داده​ها به​صورت میانگین لگاریتمی± انحراف معیار بیان شــد. مقایسۀ 
بیــن میانگین گروه​ها با اســتفاده از آزمون​های ANOVA  یک​طرفه و 
آزمــون post hoc Tukey تجزیه و تحلیل شــد. p>0/05  به لحاظ 

آماری معنی​دار در​نظر گرفته شد.

یافته‌ها
تشکیل بیوفیلم

جــدول 1 توانایی تشــکیل بیوفیلم 5 جدایــۀ  P. aeruginosa را بر​
اساس آزمون کریستال​ویوله نشان می​دهد. فنوتیپ تولید-کنندۀ بیوفیلم 
با جذب نوری بیشتر از 17/0 در طول​موج 492 نانومتر مشخص شد]35[. 

تمام جدايه​ها قادر به توليد بيوفيلم قوی بودند.
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مقادیر MIC و MBIC برای کیتوزان

مقادیــر MIC برای کیتوزان در تمام پنج جدایــه برابر 62 میکروگرم 
در میلی​لیتــر و MBIC 2000 میکروگرم در میلی​لیتر بود. در ادامۀ این 
مطالعه MIC ½ و MBIC ½ کیتوزان )به​ترتیب 31 و 1000 میکروگرم 
در میلی​لیتر( برای ســلول​های پلانکتونی و بیوفیلم در​نظر گرفته شدند.

اثر ضد باکتریایی MB-aPDI در حضور و عدم حضور کیتوزان

هیچ​گونه اثرکشندگی به​واسطۀ تابش نور یا MB به​تنهایی مشاهده نشد 
 )داده​ها نشان داده نشده اســت(. تعداد باکتری​ها کاهش قابل ملاحظه​ای
در حضور MB + کیتوزان، در تاریکی در مقایسه با کنترل​های تیمار​نشده 
نشــان ندادند )p<0/05(. مطابق نمودار1، غیرفعال​ســازی فتودینامیکی 
بــا متیلن​بلو منجر به کاهش قابل توجهی در شــمارش تعداد باکتری​های 
 .)p<0/05( زندۀ هر جدایه در مقایســه با گروه کنترل بدون تیمار نشــد
درحالیکه نتایج غیرفعال​ســازی فتودینامیکی با متیلن​بلو به​همراه کیتوزان 
 ســبب کاهــش قابل​توجهی در تعــداد باکتری​ها از 1 تا 3 لگاریتم شــد.

به​عنوان مثال تعداد باکتری​های زندۀ جدایۀ P. aeruginosa P3 پس​از 
غیرفعال​سازی فتودینامیکی با متیلن​بلو 0/1 ± 6/6 لگاریتم بود، در​حالیکه این 
 تعداد پس از غیرفعال​سازی فتودینامیکی با متیلن​بلو و کیتوزان به ±0/1 5/7
 لگاریتم رســید. جدایۀ P. aeruginosa P17 درمقابل غیرفعال​ســازی

فتودینامیکی با متیلن​بلو و کیتوزان نســبت به ســویۀ P3 حساس​تر بود 
)تعداد سلول زنده پس از تیمار برابر 0/06±  3/5 لگاریتم بود(.

اثر ضد بیوفیلم MB-aPDI در حضور و عدم حضور کیتوزان

همان​طور​که در نمودار 2 نشــان داده شــده اســت، غیرفعال​ســازی 
 فتودینامیکی با متیلن​بلو در حضور کیتوزان اثر ضد بیوفیلمی قابل ملاحظه​ای
 داشت )p >0/001، میانگین کاهش لگاریتمی 15/5 در بیوفیلم جدایه​های
P. aeruginosa( در​حالی​که غیرفعال​سازی فتودینامیکی با متیلن​بلو به​

تنهایی میانگین کاهش لگاریتمی 1/04 را در بیوفیلم​ها نشان داد. به​عنوان 
 مثال تعداد ســلول​های زنده در بیوفیلــم P. aeruginosa P3 پس از

غیرفعال​سازی فتودینامیکی با متیلن​بلو 0/2± 6/7 لگاریتم بود در​حالی​که 
این تعداد پس از غیرفعال​ســازی با متیلن​بلو در حضور کیتوزان به ±0/2 
1/8 رســید. غیرفعال​ســازی فتودینامیکی با متیلن​بلو و کیتوزان ســبب 
کاهش log 4/1 در تعداد ســلول​های P. aeruginosa P26 نسبت به 
نمونۀ کنترل شد )تعداد سلول زندۀ بیوفیلم پس از تیمار0/01±  4/2 بود(.

مخلوط متیلن​بلو و کیتوزان در تاریکی تا حدودی برای بیوفیلم جدایه​ها 
اثر کشندگی داشت )میانگین کاهش لگاریتمی 1/07(.

بحث
 P. aeruginosa بر​اســاس مطالعات انجام​شــده به​نظر می​رســد که
دربرابــر اثر​های کشــندۀ aPDI تحمل دارد. روش​هــای مختلفی برای 
بهبود اثربخشــی aPDI درمورد باکتری​ها طراحی شده است. هدف این 
 مطالعه بررســی اثر کیتوزان بر کارآیی MB-aPDI  بر​روی جدایه​های

P. aeruginosa  به دو شکل پلانکتونی و بیوفیلم بود. 

براســاس نتایج به​دســت​آمده غلظت 50 میکرومولار MB  به​تنهایی با 
  P. aeruginosa 47 در کاهش ســلول​های پلانکتونــی J/cm2 تابش
ناموفق بــود. در مقابل، انکوباســیون همزمــان MB )50 میکرومولار( 

جدول1: توانایی تشکیل بیوفیلم 5 جدایۀ  P. aeruginosa. جذب نوری کریستال ویوله 
در 492 نانومتر تعیین شد و به شکل میانگین± انحراف معیار گزارش شد.

 P. aeruginosa نمودار1: غیرفعال​سازی فتودینامیکی ضدمیکروبی با متیلن​بلو در 5 جدایۀ
 CFU/ml . 107- 106 باکتــری با غلظــت µM 50 از متیلن​بلو یــا متیلن​بلو + کیتوزان
 ،CH: کیتــوزان( .47 تابش شــدند J/cm2 تیمار​شــده و بــا دوز نوری )31 µg/ml(

(L: نور لیزر ،P: حساسگرنوری

 نمودار2: تعداد سلول​های زنده در بیوفیلم جدایه​های P. aeruginosa پس از غیرفعال​سازی
فتودینامیکی ضدمیکروبی با متیلن​بلو. غلظت نهایــی متیلن​بلو µM 200، غلظت نهایی 
(L: نور لیزر ،P: حساسگرنوری ،CH: 47. )کیتوزان J/cm2 1000، دوز نوری µg/ml کیتوزان
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و کیتــوزان )31 میکروگــرم در میلی​لیتــر( با همان شــدت تابش نور، 
ســبب کاهش 2/5 لگاریتم در جدایه​ها شــد. نتایج نشان​دهندۀ افزایش 
 اثربخشــی MB-aPDI به​وســیلۀ کیتوزان در ســلول​های پلانکتونی

P. aeruginosa اســت. این نتیجه ممکن است به​علت توانایی کیتوزان 
در افزایش نفوذپذیری غشــای بیرونی باکتری​ها و تسهیل ورود MB به 

درون سلول​ها باشد.

 MB )200 میکرومولار( قــادر به غیرفعال​کردن ســلول​های بیوفیلم
P. aeruginosa  به​همــراه تابش نور بود. مطالعات نشــان داده اســت 
که باکتری​ها در شــکل بیوفیلم در مقایســه با اشــکال پلانکتونی نسبت 
به عملکرد aPDI مقاوم​تر هستند]36و37[. در​حقیقت سلول​های درون 
بیوفیلم از​نظر برخی ویژگی​ها مانند میزان رشــد، ترکیب دیوارۀ سلولی و 
وجود ادهسین بین سلولی پلی​ساکاریدی با سلول​های پلانکتونی متفاوت 
هستند که ممکن اســت جذب حساسگر نوری و نفوذ نور را مختل کنند 
و فرآیند حساســیت به نور را کاهش دهند]38،24و39[. از ســوی دیگر، 
مطالعات نشان داده است که پمپ​های دفع دارو در بیوفیلم​های باکتریایی 
بسیار فعال هســتند و حساسگرهای فنوتیازینیوم مانند MB سوبسترای 

این پمپ​ها در باکتری​های گرم​مثبت و گرم​منفی می​باشند]40[.

در ایــن مطالعه، به​منظور بهبود کارآیی aPDI با اســتفاده از MB در 
باکتری P. aeruginosa درحالت بیوفیلم از کیتوزان که پلی​ساکاریدی 
خطــی و پلی​کاتیونی اســت، اســتفاده کردیم. کیتــوزان به​عنوان عامل 
ضدبیوفیلــم در مطالعات مختلــف به​تنهایی یا در ترکیب با ســایر مواد 

ضدمیکروبی استفاده شده است]41-45[. 

در ایــن مطالعه MB  )در غلظت نهایی 200 میکرومولار( ســمیت در 
تاریکی نشان نداد، در​حالی​که MB و کیتوزان )1000 میکروگرم در میلی​

لیتر( ســمیت تاریکی حدود 1/07  لگاریتم نشــان دادند که ممکن است 
به​علت فعالیت ضد بیوفیلم/ضدباکتری کیتوزان باشــد. aPDI  به​واسطۀ 
MB و کیتوزان بر​روی بیوفیلم ازپیش​تولیدشدۀ باکتری، کاهش لگاریتمی 
7/04 - 4/14 در مقایســه با کنترل نشان داد. ممکن است کیتوزان سبب 
  MB افزایش حساسیت باکتری​های درون بیوفیلم به اثر​های فتوتوکسیک
با تسهیل ورود آن به داخل بیوفیلم  P. aeruginosaشده باشد. اگرچه 

ما این فرضیه را به​طور خاص آزمایش نکرده​ایم. 

در مطالعــۀ Gsponer و همــکاران، اثر کیتوزان بــر جذب پورفیرین 
و غیرفعال​ســازی نــوری Escherichia coli بــا ایــن حساســگر 
بررســی شــد. کیتوزان، مقــدار پورفیریــن )-TPPS 4( متصل​شــده 
بــه باکتــری را افزایش داد در عین حــال غیر فعال​ســازی این باکتری 
 Chein در حضــور کیتوزان بــا موفقیت انجــام شــد]46[. در مطالعۀ
و همــکاران نیز اثــر کیتوزان بــر افزایش کارآیی غیرفعال​ســازی نوری 
تولوییدن​بلــو بــر Candida albicans در دو حالــت پلانکتــون و 
 بیوفیلم بررســی شــد. در این مطالعه ســلول​ها بعد از اثر غیرفعال​سازی

نوری با کیتوزان تیمار شــدند. اثر قارچ​کشــی کیتوزان بر​روی سلول​های 
آسیب​دیدۀ ناشی از غیرفعال​سازی نوری به​خوبی مشهود بود]47[. 

  مطالعات متعددی اثر ضدمیکربی فرمول​های مختلف کیتوزان را به​تنهایی
 و در ترکیب با aPDI بر​روی سلول​های پلانکتونی و بیوفیلم ارزیابی کرده​اند
]16،15و53-48[. داراب​پور و همکاران، اثر نانوذرات کیتوزان را بر کارآیی 
aPDI  به​واســطۀ MB بر بیوفیلم P. aeruginosa  بررســی کردند. 
 aPDI به​واسطۀ مخلوطی از نانوذرات کیتوزان و MB  اثر غیرفعال​سازی

  MB ناشی از aPDI قابل​توجهی علیه بیوفیلم باکتری نشان داد در​حالی​که
به​تنهایی باعث کاهش تعداد سلول​ها کمتر از 1 لگاریتم شد]Chen .]16 و 
همکاران نیز نانوذرات کیتوزان را به​همراه اریتروزین )ER( برای اثربخشی 
،Streptococcus mutans بر سلول​های پلانکتونی و بیوفیلم aPDI 

P.aeruginosa و C.albicans  آزمایش کردند. این ســلول​ها پس از 
تیمار با نانوذرات کیتــوزان و ER یا ER به​تنهایی، در معرض تابش نور 
قرار گرفتند. اثر فتوتوکســيک  نانوذرات کيتــوزان به همراه ER به​طور 
معنی​داری بيشــتر از ER در فرم آزاد بود]53[. بنابراین به​طور کلی، این 
 مطالعات نشان می​دهند که کاربرد همزمان aPDI و کیتوزان برای ریشه​کن

کردن عفونت​های میکروبی بسیار امیدوار​کننده است.

نتیجه​گیری
نتایج این مطالعه نشــان می​دهد، کیتوزان که ترکیبی ارزان و غیرسمی 
است، می​تواند اثر​های فتوتوکسیک متیلن​بلو را بر​روی جدایه​های بالینی 

P. aeruginosa در فرم پلانکتونی و بیوفیلم افزایش دهد.

تشکر و  قدرداني
این مطالعه با حمایت مالی دانشگاه تهران انجام شده است.
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