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خلاصه

هدف: پلاســماي حاصل از برهمکنش ليزر با ماده یکی از منابع جدید اشــعۀ ایکس است که از 
خصوصیات بســیار خوبی نظیر طول زمانی بسیار کوتاه و شــدت یا روشنایی بالا برخوردار است. 
درنتیجه، به​عنوان یکی از کاربردها جهت تصویربرداری از نمونه​های بیولوژیک بسیار مناسب است. 
دراین​زمینه فلز طلا نسبت به سایر اهداف، تابش ایکس بیشتری به​دست می​دهد. اما، دانشمندان 
 به​منظور کاهش هزینه​ها به​دنبال اســتفاده از مواد ارزان​تری هســتند. در این مقاله با اســتفاده از

شبیه​سازی​های هیدرودینامیکی نشان می​دهیم که با کاهش چگالی اولیۀ سرب تا یک حد مشخصی 
می​توان میزان اشعۀ ایکس حاصل از تابش​دهی لیزری آن را به مقدار قابل​توجهی افزایش داد.

روش بررسی: در اين مطالعه برهمکنش ليزر با مادۀ هدف و تشکيل و انبساط پلاسما به​وسیلۀ 
یک کد هيدرو​ديناميکي به​نام EHYBRID شبیه​سازی شده است. سپس روابط فیزیکی مربوط 
به تولید اشــعۀ ایکس از پلاسما بررسی شد و با استفاده از آن​ها برنامه​های کامپیوتری مناسب در 
نرم​افزار MATLAB تهیه گردید. با استفاده از این برنامه​ها و خروجی کد EHYBRID، میزان 
اشعۀ ایکس تولید​شده در سلول​های مختلف پلاسما در هر لحظه از زمان محاسبه گردید. محاسبات 
برای دو فلز طلا و ســرب انجام گردید و در نهایت تأثیر کاهش چگالی اولیه سرب بر میزان تابش 

اشعۀ ایکس مورد بررسی قرار گرفت. 

یافته​ها: نتایج حاصل از شبیه​سازی​ها نشان دادند که با در​نظر گرفتن چگالی عادی برای دو فلز، 
میزان تابش ایکس از پلاسمای طلا بیشتر است. اما، با استفاده از یک هدف سربی با چگالی اولیۀ 
کاهش​یافته مي​توان تابش ایکس از پلاسمای حاصل از آن را تا مقدار مربوط به طلا افزایش داد. در​

واقع چگالی اولیۀ سرب باید به مقداری بین 0/25 تا 0/1 چگالی عادی کاهش داده شود. 

 نتیجه​گیری: تابش اشعۀ ايکس از پلاسمای حاصل از تابش​دهی لیزری دو فلز طلا و سرب به​منظور
استفاده در میکروسکوپی اشعۀ ایکس به-صورت عددي شبيه​سازي شد. نتایج حاصل از این مطالعه 
نشان دادند که کاهش چگالي اولیۀ سرب که با روش​هاي لايه​نشاني خاصي قابل انجام است، تابش 
ایکس از پلاسمای آن را به ميزان قابل توجهی  افزايش می​دهد. بنابراین می​توان با استفاده از فلزات 
ارزان با چگالی اولیۀ مناسب، علاوه​بر کاهش قابل توجه هزینه​ها اشعۀ ایکسی با شدت و روشنایی 
بسیار مناسب تولید کرد که جهت تصویربرداری میکروسکوپی از نمونه​های بیولوژیک با وضوح بسیار 

بالا قابل استفاده باشد.

واژه‌های كليدی: برهمکنش لیزر با ماده، پلاســمای لیزری، تابش اشــعۀ ايکس از پلاســما، 
میکروسکوپی اشعۀ ایکس
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مقدمه
يکي از بهترین منابع تابش الکترو​مغناطيســي در محدودۀ طيفي اشعۀ 
ايکس، پلاسماي حاصل از برهمکنش ليزر با ماده مي​باشد. با تابش​دهی یک 
 مادۀ هدف مناسب به​وسیلۀ پالس لیزری پر​توان، پلاسمایی تولید می​شود
که می​تواند دانسيتۀ الکتروني از مرتبۀ cm-3 1023 و درجۀ حرارت​هايي 
به ميزان چندين کيلو​الکترون ولت داشته باشد. این شرایط باعث می​شود 
که پلاســمای لیزری منبع بسیار مناســبی برای تابش اشعۀ ایکس شود. 
اشــعۀ ايکس توليد​شده از اين روش دارای روشــنایی یا شدت بالا، طول 
زمانی کوتاه، اندازۀ کوچک و ثبات فضایی بســیار خوبی اســت که باعث 
کاربرد روز​افزون این منابع در بخش​های متنوعی نظیر لیتوگرافی با دقت 
بالا ]1و2[، میکروســکوپی اشعۀ ایکس ]5-3[ و گداخت لیزری ]6[ شده 
است. به​ویژه اشعۀ ایکس در محدودۀ طول​موجی 4.4-2.3 نانو​متر که به 
محدودۀ پنجرۀ آب )Water-Window Region( معروف است، برای 
تصویر​برداری از نمونه​های زیستی زنده با کنتراست بالا مورد استفاده قرار 
می​گیرد زیرا آب در این محدودۀ طیفی تقریباً شــفاف اســت ]4و7[. اما، 
منابع مرسوم و سنتی اشعۀ ایکس یعنی همان منابع تابشی سینکروترون 
)Synchrotron Radiation Sources( می​تواننــد پرتو​های ایکس 
نرم )Soft x-ray( با توان متوســط بالا را در محدودۀ طول​موجی پنجرۀ 
آب و نیز دیگر طول​موج​ها تولید کنند. با​این​حال، حداکثر روشنایی اشعۀ 
ایکس حاصل از آن​ها نسبت به یک پلاسمای لیزری کمتر است و این امر 
باعث می​شــود که زمان تابش​دهی نمونه جهت تصویر​برداری حدود چند 
میلی​ثانیه باشد. اما، پلاسمای تولید​شده توسط لیزر می​تواند اشعۀ ایکسی 
با روشنایی بالا تولید کند که شرایط را برای تصویر​برداری در زمان بسیار 
کوتاه​تر یعنی در حدود طول زمانی پالس لیزر )کمتر از یک نانو​ثانیه( و با 
وضوح بسیار بالا فراهم می​سازد. کاهش زمان قرار​گیری نمونه در معرض 
تابش ایکس می​تواند از یک​سو باعث کاهش تخریب تصویر یا تار شدن آن 
در اثر حرکت نمونه شود و از سوی دیگر از ایجاد تغییرات ساختاری ناشی 

از تابش اشعۀ ایکس در نمونه جلوگیری کند. 

در میان فلزات مختلف به​عنوان مادۀ هدف برای تولید پلاسمای لیزری، 
فلز طلا به​دلیل تولید اشــعۀ ایکس مناسب و نیز پایین بودن اتلاف انرژی 
به​عنوان مادۀ هدف بسیار مورد توجه قرار گرفته است ]10-8[. )همچنین 
اســتفاده از مواد ترکیبی شامل طلا نظیر Au/Sm ،Au/U ،Au/Gd و 
U/Au/Dy نیز در کاربرد​های دیگری مانند گداخت گزارش شــده است 
 ]16-11[(. مســلماً اســتفاده از طلا در چنین مــواردی باعث بالا رفتن
هزینه​ها می​شود. به​همین​دلیل دانشمندان به​دنبال مواد ارزان​تری هستند 
که درعین​حال بتواند اشــعۀ ایکس مورد نیاز را به میزان مناســب تولید 
کند. بنابراین  باید از روش​هایی برای افزایش میزان تابش اشــعۀ ایکس از 
این مواد بهره برد تا بتوان شــدت تابــش ایکس از آن​ها را به مقدار مورد 
نیاز افزایش داد. در ســال​های اخیر توجه زیادی به یافتن روش​هایی برای 

افزایش تابش ایکس از پلاســمای لیزری شده است. تأثیر شرایط مختلف 
پالس لیزر و مادۀ هدف بر میزان تابش اشــعۀ ایکس موضوع بســیاری از 
مطالعات اخیر در زمینۀ برهمکنش لیزر با ماده بوده اســت. در این زمینه 
روش​های مختلفی ارائه شــده است که در​واقع به بهینه​سازی شرایط لیزر 
و یا هدف مورد اســتفاده می​پردازند. برای نمونه استفاده از تکنیک پیش​
پالس یا دو​پالســی ]17و18[ و هدف​هایی که تغییرات ساختاری در آن​ها 
ایجاد شــده مانند اهداف پوشیده​شده از نانو​ذرات ]19[، اهداف متخلخل 
]20[ و نیز اهدافی با ســطوح نانو​ســاختار مانند سطوح شبکه​ای )توری​

مانند( ]21[ یا نانو​لوله​ای ]22[ گزارش شده است.

هدف ما در این مطالعه این است که نشان دهیم با کاهش چگالی اولیۀ یک 
فلز ارزان​قیمت مانند سرب می​توان تابش ایکس از پلاسمای حاصل از تابش​
دهی لیزری آن را تا حد قابل توجهی افزایش داد که بتواند جایگزین مناسبی 
برای مادۀ گران​قیمتی مانند طلا باشــد. در ايــن مقاله، مطالعات به​صورت 
مقايسه​اي بين دو عنصر سرب و طلا که داراي ويژگي​هاي مناسب براي تولید 
اشعۀ ایکس هستند، انجام گرفته است. برهمکنش پالس​های لیزری پر​توان 
با این دو فلز به​وسیلۀ یک کد هیدرو​دینامیکی شبیه​سازی شده است. سپس 
با استفاده از اطلاعات به​دست​آمده و کد​های کامپیوتری نوشته​شده بر​اساس 
روابط مربوط، تابش اشــعۀ ایکس پیوســته )ترمزی و باز​ترکیب( از پلاسما 
محاســبه شده است. سپس تأثير کاهش چگالي اولۀي اهداف مورد استفاده 
بر ميزان تابش ايکس مورد بررسي قرار گرفته است. در نهايت چگالي اولۀي 
مناسبی براي سرب به​دست آمده است که بتواند باعث توليد ميزان مناسب 
اشعۀ ايکس شــود، به​طوری​که بتواند جایگزین مناســبی برای طلا باشد.

تئوری و روش بررسي
در اين مطالعه براي شبيه​ســازي برهمکنش ليزر با هدف و تشــکيل و 
انبساط پلاسما از کد هيدرو​ديناميکي EHYBRID استفاده شده است 
]23[. در این مطالعه از نســخۀ دوم اين كد که به زبان Fortran نوشته 
شــده و در محیط ویندوز قابل اجراســت، بهره برده​ایــم.  این کد هیدرو​

دینامیکی مجموعه​اي کامل از معادلات حاکم بر پلاســما شامل معادلات 
ماکســول، حرکت سيال، پيوســتگي و معادلۀ حالت را با​توجه به شرايط 
مرزي حل می​نماید و پارامتر​هاي پلاســما را بر​حسب زمان در 98 سلول 
محاسباتی به​دست مي​دهد. این کد برای شبیه​سازی اثر​های پالس​های نانو​

ثانیه و پیکو​ثانیه )ps 10<( مناسب است و قابلیت اعمال دو پالس لیزری 
و نیز شبیه​سازی اهداف دو لایه را نیز دارد. براي مادۀ هدف، نود و هشت 
 لاۀي موازي در​نظر گرفته شــده است که ليزر از لاۀي نود و هشتم به​صورت

عمود بر سطح لايه وارد مادۀ هدف مي​شود.

با جاي​گذاري اطلاعــات مربوط​به مادۀ هدف از​جملــه چگالي جرمی، 
ضخامت و انرژي يونيزاســيون الکترون​هــاي آن و همچنين خصوصيات 
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با فرض یک توزیع ســرعت ماکســولی برای الکترون​ها و یون​ها، میزان 
تابش ایکس از​طریق تابش ترمزي برحســب فرکانس را مي​توان از رابطۀ 

زير محاسبه نمود ]24و25[:

                         
)1(

کــه در آن Te ،ne ،me و e به​ترتیب جرم، دانســیتۀ عددی، دما و بار 
الکترون می​باشــند. پارامترهای k ،Z ،c و h نیز به​ترتیب سرعت نور در 
خلأ، درجۀ یونیزاسیون یون​ها، ثابت بولتزمان و ثابت پلانک هستند. شکل 

عددي رابطۀ فوق به​صورت زیر خواهد بود:

)2(

در تابــش باز​ترکیــب، الکترون آزاد توســط يک اتم يونيــزه با درجۀ 
یونیزاسیون Z+1 جذب مي​شــود و در​نتیجه الکترون به​حالت مقيد اتم 
يونيزه با درجۀ یونیزاســیون Z گذار می​کنــد. بدین​ترتیب يک فوتون با 

انرژي زير ساطع مي​گردد:

                                                         )3(

که در آن عبارت اول و دوم در ســمت راست معادله نشان​دهندۀ انرژي 
جنبشي اولۀي الکترون و انرژي تراز نهايي هستند و n عدد کوانتومي اصلي 
اســت. از​آنجا​که انرژي اولۀي الکترون مي​تواند مقادير پيوسته داشته باشد، 
تابش ایجاد​شــده دارای طيف پيوســته خواهد بود. با​توجه به رابطۀ فوق 
می​تــوان نتیجه گرفت که گذار​هاي باز​ترکيب در شــرط  )لبۀ 
بازترکيب( صدق می​کنند به​طوري​که طيف تابش​شــده به​دليل باز​ترکيب 
در تراز​هاي مختلف، داراي »جهش«هايي خواهد بود. میزان تابش حاصل 
از گــذار الکترون​های آزاد به تراز مقیدی با عدد کوانتومی اصلی n مربوط 
به یون​های با درجۀ یونیزاســیون Zi را می​توان از رابطۀ زیر محاسبه کرد 

]24و25[:

)4(

که در آن ni دانســیتۀ عددی یون​های با درجۀ یونیزاسیون Zi است و 
پارامتــر GR ضریب گانت4 نام دارد که می​توان آن​را با تقریب خوبی برابر 

واحد در​نظر گرفت ]26[.

بر​اســاس روابط فــوق، یــک برنامۀ کامپیوتــری در محیــط نرم​افزار 
MATLAB نوشــته شــد که بتواند میزان تابش ایکس از پلاســمای 

4. Gaunt factor

 پالس ليزر در ورودي کد، مي​توان اطلاعات مورد نياز مربوط به پلاسماي
تشکيل​شــده را بر​حسب زمان و در هر سلول محاســباتی به​دست آورد. 
از مقادير به​دســت​آمده از​جمله دما و دانســيتۀ الکتروني، براي محاسبۀ 
تابش ايکس پيوســته از پلاســما استفاده مي​شــود که این کار به​وسیلۀ 
 برنامۀ کامپیوتری دیگری انجام شــده است. این برنامه​ در محیط نرم​افزار
MATLAB و براساس روابطی که در ادامه توضیح داده می​شود، نوشته 
شــده اســت که در سیســتم عامل ویندوز قابل اجرا می​باشد. )شکل1( 

طرحي شماتيک از شرايط ليزر و هدف را نشان مي​دهد.

تابش ایکس از پلاســما از طريق فرآیند​های ترمزی یــا آزاد-آزاد1، باز​
ترکیب یا آزاد-مقيد2 و خط یا مقيد-مقيد3 انجام می​شــود ]24و25[. در 
تابش ترمزی، الکترون​هاي آزاد تحت تأثير پتانســيل کولني يون شــتاب 
می​گیرند و طيف الکترومغناطيســي پيوســته تابش مي​کنند. در فرآیند 
بازترکيــب، گذار الکترون​های آزاد به ترازهــای انرژی یون​ها باعث تابش 
ایکس پيوســته می​شود. اما، تابش خط، نتيجۀ گذار الکترون​های مقید از 
ترازهای برانگیخته به تراز​های انرژی پایین​تر یون​ها است. در این تحقیق 
به​طور خاص گســیل اشــعۀ ایکس ازطریق تابش​های پیوستۀ ترمزي و 
بازترکیب درنظر گرفته شده اســت. محاسبۀ تابش خط از پلاسما شامل 
محاسبات بسیار پیچیده​تری اســت. به​همین​دلیل این فرآیند در تحقیق 
جداگانه​ای مورد بررســی قرار خواهد گرفت. البته باید توجه داشــت که 
قســمت عمدۀ تابش ایکــس در محدودۀ طول​موجی مــورد نظر در این 

تحقیق، ناشی از تابش​های پیوسته می​باشد.

1. Bremsstrahlung or Free-free emission

2. Recombination or Free-bound emission

3. Line or Bound-bound emission

شکل1: هدف فلزي تحت تابش ليزر، تشکيل پلاسما و تابش اشعۀ ایکس
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لیزری را برای مقادیر مشــخص ni ،Te ،ne و Zi در فرکانس مشــخص 
ν محاســبه کند. این پارامتر​ها برای هر ســلول محاســباتی و در هر گام 
زمانی از خروجي کد EHYBRID استخراج گرديده و به​عنوان ورودی 
در برنامۀ کامپیوتری تهیه​شده اســتفاده شده​اند. با استفاده از این برنامه 
مقدار کل تابش ايکس پيوسته از پلاسما در هر گام زماني با انتگرال​گيري 
از روابط )2( و )4( در بازۀ فرکانسي مورد نظر و سپس جمع​بندي مقادير 
حاصل براي تمام سلول​هاي پلاسما محاسبه گردید. شرايط مورد استفاده 

در شبيه​سازي​ها در جدول شمارۀ 1 آورده شده است.

یافته​ها 
شــکل​هاي 2-الــف و 2-ب ميــزان تابــش اشــعۀ ایکــس باز​ترکيب 
)Recombination( را بــرای پلاســمای تولید​شــده از هــدف طلا با 
 ضخامت mm 200 در تابش​دهي به​وســيلۀ پالــس ليزري با طول پالس
ns 2 اما با شدت​هاي متفاوت W.cm-2 1014 و W.cm-2 1015 نشان 
مي​دهد. همچنین شکل​های 2-ج و 2-د نشان​دهندۀ تابش ایکس ترمزی 
)Bremsstrahlung( از پلاســما اســت. مقادیر به​دست​آمده مربوط به 
زمان t=1 ns پس از شروع تابش​دهی است. همان​طور​که مشاهده مي​کنيم 
با افزايش شــدت پالس ليزر به W.cm-2 1015 ميزان تابش​ها حدوداً به 
ميزان ده برابر افزايش پيدا کرده است. مقایسۀ طیف​های تابشی ترمزی و 
باز​ترکیب نشان می​دهد که در فرکانس​های پایین، تابش ترمزی غالب است 
و در فرکانس​های بالای طیف، تابش باز​ترکیب تأثیر بسیار بیشتری دارد.

حال تابش ايکس کل را براي دو هدف طلا و سرب مقايسه مي​کنيم که 
معادل است با مجموع تابش​هاي ترمزي و باز​ترکيب تابش​شده از تمام سلول​
ها که در کل بازۀ فرکانســی انتگرال​گیری شده است. شکل​هاي 3-الف و 
3-ب ميزان تابش کل بر​حسب زمان را براي طلا و سرب در دو شدت ليزري 
W.cm-2 1014 و W.cm-2 1015 نشــان مي​دهند. اهداف مورد نظر با 

ضخامت mm 200 در​نظر گرفته شده​اند و طول پالس ليزر ns 2 مي​باشد.

این شــکل نشان می​دهد که برای هر دو هدف و در هر دو شدت، تابش 
ایکس از پلاســما نسبت به زمان یک روند افزایشی دارد تا زمانی​که پالس 
لیزر پایان یابد. همچنین مشاهده می​کنیم که برای اهدافی با چگالی​های 
عادی، ميزان تابش از هدف طلا بيشتر از سرب است. در شرايط شدت پالس 

W.cm-2 1014 تفاوت کمتري در تابش منتشر​شده از دو هدف مشاهده 

مي​شــود اما، همچنان تابش ايکس از هدف طلا بیشتر است. برای بررسی 
تأثیر کاهش چگالی اولیه بر میزان تابش ایکس برای هدف​های طلا و سرب، 
ابتدا تغییر میزان تابش در ســلول​های مختلف هدف را بررسی می​کنیم.

در شــکل 4-الف و 4-ب نمودار تابش بر​حسب شــمارۀ سلول​ها براي 
اهداف سرب و طلا با چگالي معمولي و با کاهش چگالي به ميزان 1/2   و 
1/4 نمايش داده شده است. شــدت ليزر W.cm-2 1015 و طول پالس 
ليزر ns 2 اســت. باتوجه به شــکل 4-الف مشخص مي​شود که با کاهش 
چگالی اولیۀ هدف، لایه​های بیشتری در تابش ایکس سهیم خواهند شد. 
همان​طور​که قبلًا بيان گرديد، کاهش چگالي ماده باعث افزایش نفوذ پالس 
ليزر می​شود و موجب افزايش دما و دانسيتۀ الکتروني در لايه​هاي درونی 
پلاسما و توليد اشعۀ ايکس از آن​ها مي​گردد. با مقایسۀ شکل​های 4-الف 
و 4-ب مشــاهده می​شود که با کاهش چگالي در هدف سربی، سلول​هاي 
بيشتري نسبت به طلا در تابش ايکس شرکت می​کنند که دليل آن کمتر 
بودن ذاتي چگالي ســرب نسبت به طلا و نفوذ بيشتر پالس ليزر در سرب 
اســت. نکتۀ ديگري که از مقايسۀ دو نمودار به​دست مي​آيد، بيشتر بودن 
مقدار عددي شــدت تابش براي هدف طلا نســبت به هدف سرب است. 

حال، تأثیر کاهش چگالی اولیۀ سرب را بر مقدار کل تابش ایکس از آن 
بررســی می​کنیم. شکل 5 نمودار تابش ایکس کل بر حسب زمان را برای 
هدف سربی با چگالي جرمي کاهشي​افته تحت تابش لیزر نشان مي​دهد. 
در اين نتايج فرض شــده است که چگالي اولۀي هدف به نسبت​هاي 1/10 
1/4،1/2 و در مقايســه با چگالي عادي آن کاهش يافته باشــد. همچنین 
نمودار تابش کل بر حســب زمان براي هدف طلا با چگالي معمولي نیز به​

منظور مقایسه آورده شده است.

همان​طور​که مشاهده مي​شود با کاهش بیشتر چگالي اولیۀ هدف سربی، 
افزایــش قابل​توجهي در تابش ایکس ايجاد مي​شــود. علت اين امر نفوذ 
بيشــتر پالس ليزر و جذب بيشتر انرژي ليزر و در​نتيجه افزايش قابل​توجه 
دما و دانســیتۀ الکترونی در پلاســما اســت که نتیجۀ آن افزایش تابش 
ايکس اســت. تأثير کاهش چگالــي اولیۀ هدف به​گونه​اي اســت که هم 
 موجب افزايش کميت و هم کيفيت در پرتوی ايکس ساطع​شده مي​گردد.
پي​بردن به اين موضوع که تابش از هدف ســرب با چه چگالي اولیه​ای با 
تابش از هدف طلا با چگالي عادي تقريباً برابري مي​کند به​منظور مقايسه 
مي​تواند حائز اهميت باشــد. شکل 5 نشــان می​دهد که با کاهش چگالي 
اولیۀ ســرب تا مقدار 25/0 نســبت به چگالی عادی، تابش ایکس از آن 
تقريباً با تابش ايکس از هدف طلا برابر مي​شود. همچنین مشاهده می​شود 
که کاهش بیشتر چگالی اولیۀ سرب به 1/0 مقدار عادی، تأثیر چندانی بر 
افزایش بیشتر تابش ایکس ندارد. بنا​بر​​این می​توان نتیجه گرفت که هدف 
ســربی با چگالی اولیه​ای در محــدودۀ 25/0 تا 1/0 مقدار عادی می​تواند 

تابش ایکسی تقریباً معادل با مقدار مربوط به هدف طلا تولید کند.

جدول1: مشخصات اصلي ليزر و مادۀ هدف مورد استفاده در شبيه​سازي​ها
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شکل2: )الف و ب( تابش بازترکيب، )ج و د( تابش ترمزي از پلاسمای حاصل از برهمکنش پالس ليزري ns 2 با شدت​های W.cm-2 1014 و W.cm-2 1015 با هدف طلا به ضخامت mm 200 نتایج مربوط 

است به زمان t=1 ns پس از آغاز برهمکنش

شکل3: نمودار شدت تابش ايکس کل بر​حسب زمان براي دو هدف طلا و سرب با ضخامت mm 200. الف: شدت پالس W.cm-2 1014 و ب: شدت پالس W.cm-2 1015. طول پالس ليزر ns 2 مي​باشد.
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شکل4: تابش ایکس بر​حسب شــمارۀ سلول​ها براي اهداف الف: طلا و ب: سرب با چگالي​
های اولیۀ مختلف. شدت ليزر W.cm-2 1015 و طول پالس ليزر ns 2 است.

شــکل5: نمودار تابش کل بر حســب زمان براي تابش به هدف طلا بدون کاهش چگالي و 
سرب با کاهش چگالي به ميزان 1/2 و 1/4 و 1/10

بحث و نتیجه​گیری
از ​زمانی​که اولین آزمایش​ها در زمینۀ برهمکنش لیزر با ماده انجام شــد 
)اوایل دهۀ 80(، مشــخص شد که پلاســما​های تولید​شده به​وسیلۀ لیزر 
منابع بسیار خوبی برای تابش الکترو​مغناطیسی در ناحیۀ طیف اشعۀ ایکس 
هســتند. پالس​های اشعۀ ایکس تولید​شــده از این طریق دارای روشنایی 
 یا شــدت بســیار خوب و نیز طول پالس کوتاهی هستند. مشخصات این
پالس​ها از​جمله شــدت و طول پالس را می​توان با استفاده از پارامتر​های 
 لیزر و مادۀ هدف کنترل نمود. چنین خواصی ســبب شــد که این منابع
به​طور گســترده در بخش​های پیشــرفتۀ علمی و فنی نظیر لیتوگرافی، 
 ،5ICF تصویر​برداری اشــعۀ ایکس، گداخت به​روش محصور​سازی لختی
لیزر​های اشــعۀ ایکس و علم مواد مورد اســتفاده قرار گیرند ]6-1[. یکی 
از مهم​تریــن این کاربرد​ها در بخش پزشــکی، فراهم کردن امکان تصویر​
برداری با وضوح بســیار بــالا از نمونه​های زندۀ بیولوژیک اســت. در این 
مورد مدت​زمان قرار​گیری نمونه در معرض تابش اشعۀ ایکس بسیار حائز 
اهمیت اســت زیرا اگر این زمان طولانی باشــد می​تواند موجب تغییرات 
ســاختاری در نمونه و نیز کاهش دقت و کیفیت تصویر شود. این زمان در 
مورد اشــعۀ ایکس حاصل از پلاسمای لیزری نسبت به سایر منابع مرسوم 
نظیر سینکروترون​ها و پلاسمای حاصل از تخلیۀ الکتریکی بسیار کوتاه​تر 

است که یک مزیت عالی به​شمار می​رود. 

از​طرف​دیگر تصویر​برداری از نمونه​های بیولوژیکی زنده با وضوح بســیار 
بالا نیاز به یک منبع اشــعۀ ایکس با شدت مناسب در ناحیۀ طیفی پنجرۀ 
آب )nm 4.4-2.3( دارد ]7[. اما، پلاســمای حاصل از تابش​دهی لیزری 
همۀ مواد نمی​تواند اشــعۀ ایکس با شــدت مورد نیاز را تولید کند. شدت 
اشــعۀ ایکس حاصل از تابش​دهی لیزری اهدافی مانند طلا مناسب است 
اما، بسیار پر​هزینه است. برای مثال ایتو و همکاران در سال 2016 از تابش​

دهی لیزری هدف طلا برای تولید اشعۀ ایکس به​منظور تصویر​برداری اشعۀ 
ایکس از نمونه​های زنده اســتفاده کردند ]8[. آن​ها از یک لایۀ نازک طلا 
به​عنوان هدف اســتفاده کردند و آن را به​وسیلۀ یک پالس لیزر پرشدت با 
انرژی20 ژول و طول پالس 600 پیکو​ثانیه تابش​دهی کردند تا پلاسمای 
طلا تشــکیل شود. پالس اشعۀ ایکس تابش​شــده از این پلاسما در ناحیۀ 
پنجرۀ آب با شــدت photons/pulse/sr 1015×1.4 اندازه​گیری شد. 
اشعۀ ایکس تابش​شده با این شدت امکان ضبط یک تصویر میکرو​سکوپی 
از سلول​های بیولوژیک زنده را با یک​بار قرار گرفتن در معرض تابش پالس 
فراهم ساخت. همچنین ماســیم و همکاران در سال 2016 از تابش​دهی 
لیزری نانو​ذرات کروی طلا برای تولید اشعۀ ایکس به​منظور تصویر​برداری 
اســتفاده کردند ]27[. آن​ها نشان دادند که با تغییر قطر نانوذرات، میزان 
تابش ایکس از آن​ها تغییر می​کند و برای قطری در حدود 50-40 نانومتر 
بیشــترین مقدار تابش ایکس حاصل می​شــود. همچنین سو و همکاران 

5. Inertial Confinement Fusion
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نیز در ســال 2018 از سوسپانسیون نانو​کلوئیدی طلا به​عنوان مادۀ هدف 
اســتفاده کردند ]28[. آن​ها از تکنیک دو​پالســی برای تابش​دهی لیزری 
هدف اســتفاده کردند و نشــان دادند که با به​کار​گیری یک تأخیر زمانی 

مناسب بین دو پالس لیزر می​توان تابش ایکس بهینه​ای به​دست آورد. 

امــا، با​توجه به هزینۀ بــالای اهداف طلا یافتن راه​هایــی برای افزایش 
شــدت تابش ایکس از اهداف ارزان​تر بســیار مطلوب است. بدین​منظور 
باید جذب انرژی لیزر در مادۀ هدف و نیز میزان تبدیل انرژی جذب​شــده 
به اشــعۀ ایکس را افزایش داد. تحقیقات در این زمینه نشــان داده است 
که با ایجاد برخی تغییرات ســاختاری در مادۀ هدف می​توان شدت تابش 
ایکس را بهبود داد. استفاده از اهداف ساختاری مانند گریتینگ یا ساختار 
ســطحی توری​مانند ]21[، نانو​ذرات ]19و27[، آرایــش نانو​لوله​ها یا نانو​
 سیم​های فلزی ]22، 29و30[، اهداف گازی ]33-31[ و اهداف با چگالی

کاهش​یافته )متخلخل یا فوم​مانند( ]20و36-34[ می​تواند باعث افزایش 
تابش اشــعۀ ایکس شود. استفاده از پیش​پالس لیزری یا تکنیک دو​پالسی 
نیز برای افزایش اشــعۀ ایکس پیشنهاد شده است ]17و18[. در این میان 
نشــان داده شده اســت که هدف​های گازی می​توانند به​طور قابل​توجهی 
بازده تبدیل انرژی لیزر به اشعۀ ایکس را افزایش دهند اما، استفاده از آن​ها 
 شامل برخی مشکلات است. کار با چنین اهداف گازی کم​چگال به​صورت
 تجربی بسیار دشوار است و همچنین تنها در بعضی از محدوده​های طول​موجی
محدود استفاده می​شوند ]33[. در سال​های اخیر تحقیقات انجام​شده بر​
روی مواد با چگالی کاهش​یافته مانند اهداف متخلخل یا فوم​مانند، نشان 
داده است که چنین اهدافی میزان جذب لیزر را افزایش می​دهند و منجر 
به افزایش تابش اشعۀ ایکس می​شوند ]37-34[. چنین اهدافی می​توانند 
جایگزینی مناســب برای مواد گازی باشــند. همچنین ساخت و استفادۀ 
تجربی از آن​ها نسبت به سایر اهداف ساختار​یافته ساده​تر و ارزان​تر است. 
برای مثال هارا و همکاران در ســال 2018 از هدف متخلخل بیسموت با 
چگالی کاهش​یافته تا 7/5 درصد اســتفاده کردند. آن​ها نشــان دادند که 
اشــعۀ ایکس حاصل از تابش​دهی لیزری ایــن هدف در ناحیۀ پنجرۀ آب 
نســبت به هدف با چگالی عادی بیشتر است. دنگ و همکاران نیز در سال 
2018 تابش اشــعۀ ایکس از هدف طلا در شرایط چگالی عادی و چگالی 
 کاهش​یافته )g cm−3 0.36( را به​صورت تجربی اندازه​گیری کردند. آن​ها
از پالس​هــای لیزری نانو​ثانیه با انــرژی 500 ژول برای تابش​دهی اهداف 
اســتفاده کردند. نتایج نشــان داد که با اســتفاده از هدف با چگالی اولیۀ 
کاهش​یافته، تابش اشعۀ ایکس حدود 21 درصد نسبت به هدف با چگالی 

عادی افزایش می​یابد. 

در مطالعۀ حاضر هدف این است که نشان دهیم از طریق کاهش چگالی 
اولیۀ یک هدف کم​هزینه مانند سرب )نسبت به طلا( می​توان تابش اشعۀ 
ایکــس از آن را تحت تابش لیزر تا حد قابل توجهی افزایش داد که بتواند 
جایگزین مناسبی برای مواد پر​هزینه​ای مانند طلا باشد. در این مقاله ابتدا 
 تابش اشعۀ ايکس از پلاسمای حاصل از تابش​دهی لیزری طلا و سرب به​منظور

استفاده در میکروسکوپی اشــعۀ ایکس به​صورت عددي شبيه​سازي شد. 
 مقایسۀ طیف​های تابشی ترمزی و بازترکیب نشان داد که در فرکانس​های

پاییــن، تابش ترمزی غالب اســت و در فرکانس​هــای بالای طیف، تابش 
بازترکیب تأثیر بســیار بیشــتری دارد. مشاهده شــد که برای اهدافی با 
چگالی​های عادی و در شــرایط تابشی برابر، ميزان تابش از هدف طلا به 
مقدار قابل توجهی بيشتر از سرب است. نشان داده شد که کاهش چگالي 
هدف که با روش​هاي لايه​نشاني خاصي قابل انجام است، به ميزان زيادي 
موجب افزايش تابش اشــعۀ ايکس مي​شود. مشــاهده شد که با استفاده 
از یک هدف ســربی کــه چگالی اولیۀ آن به مقــداری در محدودۀ 0/25 
تا 0/1 نســبت به چگالی عادی کاهش یافته باشد، می​توان اشعۀ ایکسی 
تقریباً معادل با مقدار مربوط به طلا را به​دســت آورد. بنابراین، می​توان با 
استفاده از فلزات ارزان با چگالی اولیۀ مناسب، علاوه​بر کاهش قابل توجه 
هزینه​ها، اشعۀ ایکسی با شدت و روشــنایی بسیار مناسب تولید کرد که 
جهت تصویربرداری میکروســکوپی از نمونه​های بیولوژیک با وضوح بسیار 
بالا قابل اســتفاده باشد. همچنین بهینه​ســازی تابش اشعۀ ایکس از این 
طریق به​طور چشــمگیری کمک می​کند تا زمان تابش​دهی نمونه جهت 
تصویربــرداری کاهش یابد و در​نتیجه از ایجــاد اثر​های مخرب روی ابزار 

اپتیکی و نیز نمونۀ بیولوژیک جلوگیری شود.
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