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21-14 .لیزر در پزشکی؛  1397،  دورۀ 15،  شمارۀ 3،  صفحات:

کاربرد شــبکه​های عصبی در آنالیــز طیفی رامان جهت 
تفکیک منشأ سرطان​های متاستازیافته به غدد لنفاوی

خلاصه

مقدمه: تعیین منشــأ اولیۀ سرطان​های متاستازیافته در طراحی درمان و میزان موفقیت آن 
بسیار حائز اهمیت است. از​آنجا​که ســلول​های متاستازیافته حاوی اطلاعاتی از بافت مبدأ می​

باشند و طیف​سنجی رامان اثر انگشت مولکولی از سلول​ها به​دست می​دهد، روش​های مبتنی​بر 
طیف​سنجی رامان می​تواند روش جدیدی در تعیین منشأ اولیۀ سرطان به​دست دهد.

روش بررسی: در ایــن مطالعه نمونه​های به​دســت​آمده از سرطان​های متاستازیافته به غدد 
لنفاوی از ســه مبــدأ متفاوت معده، پســتان و رودۀ بزرگ مورد ارزیابی رامــان قرار گرفت و 
طیف​های به​دســت​آمده پس از پیش​پردازش با شــبکه​های عصبی MLP و شبکۀ پیشنهادی 

SCNN با​توجه به مبدأ سرطان طبقه​بندی شدند.

 )SCNN( یافته‌ها: طبقه​بندی با استفاده از شبکۀ بهینه​شده با نام شبکۀ عصبی خودسازنده
نتایج بسیار بهتری  نسبت به MLP نشان داد و درنهایت صحتی برابر 89 درصد در طبقه​بندی 

سه کلاس )سه مبدأ سرطان( در اعتبارسنجی متقابل یکی را کنار بگذار به​دست آمد.

نتیجه‌گیری: مطالعۀ حاضر نشــان داد که طیف​سنجی رامان با به​کارگیری روش​های مناسب 
در پردازش طیف​ها می​تواند به روش جدیدی در تعیین منشــأ اولیۀ سرطان​های متاستازیافته با 

منشأ اولیۀ نامعلوم تبدیل شود.

واژه‌های كليدی: سرطان، متاستاز، طیف​سنجی رامان، شبکۀ عصبی خودسازنده، الگوریتم ژنتیک
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مقدمه
سرطان​های متاستازیافته با منشأ اولیۀ نامعلومCUP( 1( تقریباً 2 درصد 
از سرطان​ها را تشــکیل می​دهند]1[. علی​رغم پیشرفت​های حاصل​شده 
در ایمونوهیستوشــیمی و تکنیک​های تصویربرداری، تشــخیص و درمان 
این بیماران همچنان مســئله​ای غامض برای انکولوژیســت​ها است. حتی 
با تلاش​های گســترده با استفاده از روش​های پاتولوژیکی و تصویربرداری 
مدرن، همچنان نرخ تشــخیص مبدأ این سرطان​ها پایین است. در کمتر 
از 20 درصــد از بیماران، مکان اولیۀ تومور پیش از مرگ تشــخیص داده 
می​شــود. هزینه و زمان بررسی​های لازم برای تشخیص مکان اولیۀ تومور 

مسئلۀ دیگر مورد توجه پزشکان و انکولوژیست​ها می​باشد]2و3[. 

ارزیابی تشــخیصی بیماران دارای CUP با بررسی​های آزمایشگاهی و 
بالینی که شــامل عمدتاً پاتولوژی و نیز تصویربرداری و آندوسکوپی است، 
انجام می​شــود. بهره​گیری از نشانگر​های سرمی تومور نیز در برخی موارد 
کمک​کننده است]3[. اخیراً نیز پیشرفت​های زیادی در تشخیص منشأ اولیۀ 
تومور با استفاده از نمایه​سازی تومور با بیان ژن حاصل شده است]1[. پرسنل 
درمانی باید الگوریتم معینــی را برای تعیین تومور اولیه با درنظر گرفتن 
هزینه و زمان و نیز سودمندی نهایی آن در وضعیت بیمار دنبال کنند]2[.

در کنار روش​های تشــخیصی حاضر، طیف​ســنجی رامان به​عنوان یک 
تکنیک نوری غیر مخرب که قادر به ارزیابی مولکولی نمونه​های بافتی بدون 
 نیاز به نمونه​برداری و آماده​سازی در مدت​زمان کوتاه )حتی زمان حقیقی(

می​باشد، در ســال​های اخیر بسیار موردتوجه محققان حوزۀ سرطان قرار 
گرفته است]4-13[. این مطالعات شامل مطالعۀ سرطان در بافت​های مختلف 
همچون سرطان پستان]14و15[، سرطان​های دستگاه گوارش]16و17[، 
تومــور مغــزی]18و19[، ســرطان پوســت ]20و21[ و ... می​باشــد.

در طیف​ســنجی رامان که مبتنی​بر پراکندگی غیر الاســتیک نور تک​
رنگ می​باشــد، باریکه​ای از لیزر تک​رنگ کم​توان به نمونه تابیده می​شود. 
متناسب با فرکانس نوســان پیوند​های مولکولی موجود در نمونه بر​طبق 
پدیدۀ پراکندگی رامان علاوه​بر نور با طول​موج لیزر فرودی، نور​هایی با رنگ 
)طول​موج( متفاوت در نور پراکنده​شــده وجود دارد. با آشکار​سازی شدت 
 نور پراکنده​شــده در طول​موج​های اطراف طول​موج فرودی، طیف رامان

به​صورت اثر انگشــتی از نمونۀ مورد مطالعه به​دست می​آید]22[. با آنالیز 
طیف​های به​دست​آمده از گروه​های مختلف پاتولوژیکی می​توان به تفکیک 
و تمایز طیف​ها و یافتن ویژگی​های مشخصۀ هر گروه پاتولوژیکی پرداخت.

با​وجود پتانســیل​های این تکنیک برای تبدیل شــدن به ابزاری جهت 
بررســی​های غیرتهاجمی، زمان حقیقی و درون​تنی، تفســیر طیف​های 
نســبتاً پیچیده به​دست آمده است و تشــخیص آسیب​های پاتولوژیکی با 
حساســیت و ویژگی بالا از مشکلات به​کار​گیری بالینی این تکنیک است. 

1. Cancer of Unknown Primary Site

در​این​راستا، استفاده از الگوریتم​های هوش مصنوعی در استخراج اطلاعات 
از طیف​های رامان بسیار مورد توجه محققان این حوزه قرار گرفته است. 

در مطالعــۀ حاضر باتوجه به اهمیت تعیین منشــأ اولیۀ ســرطان​های 
 متاســتاز​یافته از یک​ســو و پتانسیل​های طیف​ســنجی رامان در ارزیابی

نمونه​های بافتی از​سوی​دیگر، مســئلۀ تفکیک سرطان​های متاستاز​یافته 
به یک مقصد از منشــأ​های متفاوت مورد توجه قرار گرفته اســت. از​آنجا​

که گره​های لنفاوی یکی از مقصد​های ســرطان​های متاستازیافته هستند 
لذا، سرطان​های با منشأ اولیۀ نا​معلوم نیز در آن ظهور می​یابد]2[، مطالعۀ 
حاضر بر​روی سرطان​های متاستاز​یافته از سه منشأ متفاوت )معده، پستان 
و رودۀ بزرگ( به غدد لنفاوی با هدف تفکیک مبدأ از روی نمونۀ متاستاز​

یافته انجام شده است.

در مطالعــۀ حاضر، پــس از پیش پردازش داده ها از شــبکه عصبی به 
عنوان طبقه بند اســتفاده شده و شبکه عصبی جدیدی بنام شبکه عصبی 
خودســازندهSCNN( 2( به منظور بهبود قدرت تفکیک شــبکه عصبی 

پیشنهاد شده و عملکرد آن مورد ارزیابی قرار گرفته است.

روش بررسی
1. نمونه​ها 

در این تحقیق سه بیمار مبتلا به سرطان متاستاز​یافته مورد بررسی قرار 
گرفتند. این افراد دارای تومور​های معده، پستان و رودۀ بزرگ متاستاز​یافته 
به غدد لنفاوی بودند. از هر​یک از این افراد نمونه​هایی از بافت نرمال اولیه، 
سرطانی اولیه )مبدأ( و ســرطان ثانویه )متاستاز به غدد لنفاوی( ازطریق 
 جراحی به​دســت آمد. نمونه​های به​دســت​آمده پس از برش داده​شــدن
توســط متخصص پاتولوژی به منظور جدا نمودن بخش​های مشکوک به 
تومور در داخــل محلول فرمالین )10 درصــد فرمالدئید در آب( فیکس 
و جهت طیف​ســنجی به آزمایشــگاه رامان منتقل شــدند. پس از طیف​
ســنجی، نمونه​ها به آزمایشگاه هیســتو​پاتولوژی ارجاع داده شدند و بقیۀ 
فرآیند تشخیص هیستو​پاتولوژی شامل آماده​سازی بافت، تهیۀ بلوک​های 
پارافینی، برش دادن با میکروتوم و رنگ​آمیزی با هماتوکســیلین و ائوزین 
و در​نهایت بررســی اســاید​های به​دســت آمده زیر میکروسکوپ توسط 

متخصص هیستو​پاتولوژی و ارائۀ تشخیص روی آن​ها انجام شد. 

2. طیف​سنجی

در آزمایشــگاه طیف​ســنجی رامان، نمونه​ها پس از خــروج از محلول 
فرمالین چنــد دقیقه در هوای آزاد قرار گرفتند تا فرمالین از ســطح آن​
ها تبخیر شــود و اثر آن در طیف نمونه​ها ظاهر نشــود. سپس با استفاده 
از سیســتم طیف​ســنجی رامان مجهز به لیزر دیــودی با طول​موج 785 
nm و توان mW 10  از هر نمونه تعداد ســه طیف از نقاط مختلف آن 

2. Self-Constructing Neural Network
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به​دســت آمد. سیســتم مذکور طیف​هایی در بازۀ cm-1 3500-445 و 
با رزولوشــن cm-1 0/5 به​دســت می​دهد. پس از طیف​سنجی، نمونه​ها 
مجدداً در داخل محلول فرمالیــن قرار گرفتند و جهت انجام مابقی روال 

تشخیص به آزمایشگاه آسیب​شناسی ارجاع داده شدند.

3. مجموعۀ داده

پس از طیف​سنجی و نیز انجام فرآیند تشخیص در​مورد نمونه​ها به طیف​
های به​دست​آمده از هر نمونه، تشخیص هیستوپاتولوژی به​عنوان بر​چسب 
کلاس اختصاص یافت. در​نهایت با​توجه به هدف مطالعۀ حاضر که تفکیک 
سرطان​های متاســتاز​یافته به غدد لنفاوی با منشأهای متفاوت می​باشد، 
طیف​های به​دســت​آمده از سه نمونۀ سرطان متاستاز​یافته به غدد لنفاوی 
)در مجموع نه طیف( از ســه بیمار با ســرطان​های اولیۀ متفاوت )معده، 
پستان و رودۀ بزرگ( مجموعۀ دادۀ ما را تشکیل می​دهند. لذا، در مجموعۀ 
دادۀ مــورد مطالعه تعداد نه طیف دارای 6111 نقطۀ طیفی )در محدودۀ  
cm-1 3500-445 با رزولوشــن cm-1 0/5( در سه کلاس متاستاز​یافته 

 G(Gastric از معده، پســتان و رودۀ بزرگ که به​ترتیب با بر​چسب​های
Cancer)، B(Breast Cancer) و C(Colon Cancer) مشــخص 

شده​اند، با توزیع سه طیف در هر کلاس حضور دارند.

4. پیش​پردازش

به​منظور حذف تداخلات ناخواســتۀ ناشــی از فرآیند اندازه​گیری، سه 
مرحلۀ پیش​پردازش شامل حذف خط زمینه )ناشی از فلورسانس نمونه(، 

حذف نویز و نرمال​سازی روی طیف​ها انجام گرفت. 

در مرحلۀ حذف خط زمینه از الگوریتم 3RIA اســتفاده شــد. در این 
الگوریتم ابتــدا طیف در محدودۀ عدد موجی مورد نظر بریده می​شــود. 
ســپس از دو طرف بریده​شده با اســتفاده از ضرایب برازش خطی حداقل 
مربعات، به​صورت خطی برون​یابی می​گردد. ســپس دو پیک گوســی با 
عرض و ارتفاع مناســب در دو طرف برون​یابی​شده اضافه می​گردد. طیف 
به​دست​آمده با اضافات به​صورت مرحله​ای هموار می​گردد و در هر مرحله 
هموار​سازی در هر نقطۀ مینیمم طیف هموار​شده و طیف اصلی حفظ می​
شود این کار ادامه می​یابد تا​جایی​که دو پیک اضافه​شده به​درستی بازیابی 
گردد]23[. در مطالعۀ حاضر از الگوریتم فوق در کل بازۀ طیفی اســتفاده 
شــد، ارتفاع پیک​های گوسی اضافه​شــده دو برابر ماکزیمم طیفی بود و 

4FWHM آن​ها برابر cm-1 40 انتخاب گردید.

در مرحلۀ حذف نویز از هموار​ســازی با برازش توابع Sgolay مرتبۀ 2 
دارای محدودۀ پوشش 100 نقطه استفاده گردید.

در مرحلۀ نرمال​ســازی، از نرمال​سازی min-max که محدودۀ شدت 
طیف​ها را به بازۀ 0 و 1 محدود می​کند، استفاده شد.

3. Range Independent Algorithm

4. Full Width at Half Maximum

5. طبقه​بندی

در طبقه​بندی طیف​ها از شبکه​های عصبی مصنوعی MLP رایج و نیز شبکۀ 
 )SCNN( با ساختار بهینۀ منطبق بر داده با نام شبکۀ عصبی خود​سازنده
که توســط گروه تحقیقی حاضر توســعه داده شده اســت، استفاده شد. 

شــبکۀ MLP استفاده​شده در این مطالعه دارای 10 نرون در تک لایۀ 
میانی با تابع انتقال تانژانت ســیگموئید، ســه نرون خروجی )به​ازای سه 
کلاس طبقه​بندی( با تابع انتقال ماکزیمم نرم و 6111 ورودی به​ازای هر​
یک از مؤلفه​های طیفی اســت. شــایان ذکر است تابع عملکرد این شبکۀ 
 )SCG( آنتروپــی متقابل و تابع آموزش شــبکه گرادیان مــزدوج مدرج

انتخاب شده است. 

شــبکۀ عصبی خود​سازنده )SCNN( شــبکۀ عصبی است که علاوه​بر 
وزن اتصلات نرونی آن که در تمام شــبکه​های عصبی مصنوعی با​توجه به 
مجموعۀ آموزش تغییر یافته و بهینه می​شود، ساختار شبکه )وجود یا عدم 
وجود تمام اتصالات ممکن و تعداد نرون​های لایه​های میانی( نیز با​توجه به 
داده​های آموزش توسط یک الگوریتم بهینه​سازی، بهینه می​شود. در این 
مطالعه شبکۀ SCNN مشابه شبکۀ MLP دارای تنها یک لایۀ میانی در​
 نظر گرفته شده است. سایر مشخصات شبکه همچون توابع انتقال لایه​ها،
تابع عملکرد و تابع آموزش نیز مشــابه شــبکۀ MLP فرض شده است. 

ماتریس هینتون )ماتریس اتصالات شــبکه( در​مورد شــبکه MLP و 
SCNN به​ترتیب در شــکل a 1 و c نشان داده شده است. این ماتریس، 
از ســه ماتریس اتصال ورودی به لایه​هــا ) لایه​های میانی و خروجی( به​
Layer_ ماتریس اتصال لایه​ها به یکدیگر به​نام ،Input_Connect نام

 Bias_Connect و ماتریس اتصال بایاس بــه لایه​ها به​نام Connect
تشــکیل شده است. همان​طورکه در شکل 1 مشــاهده می​شود، درحالی​

که ماتریس هینتون شبکۀ MLP ماتریس یک شبکه پیش​خور و قطعی 
می​باشد )ســلول تو​پر نشان​دهندۀ اتصال و سلول سفید نشان​دهندۀ عدم 
اتصال می​باشد(، ماتریس هینتون شبکۀ SCNN دارای شش المان غیر 
قطعی اســت که می​تواند صفر )عدم اتصال( و یا یک )وجود اتصال( باشد. 
این المان​های غیرقطعی در تصویر با ســلول​های خاکستری​رنگ مشخص 
شده​اند که مقدار آن​ها توسط الگوریتم بهینه​سازی تعیین می​شود. علاوه​

بر شــش اتصال مذکور، تعداد نرون​های تک​لایۀ پنهان نیز به​صورت عدد 
صحیحی بین 1 تا 30 توســط الگوریتم بهینه​ســازی در ترکیب با شش 
متغیر باینری قبلی بهینه می​شــود. دیاگرام ســاده​ای از ارتباط ورودی، 
 d و b 1به​ترتیب در شــکل SCNN و MLP لایه​ها و بایاس در شــبکۀ
نشان داده شده است. در این شــکل​ها نیز اتصالات غیر قطعی با خطوط 

خاکستری​رنگ نشان داده شده است.

در مطالعۀ حاضر از الگوریتم ژنتیک برای بهینه​ســازی ساختار استفاده 
شده است. تابع هدف در بهینه​سازی ساختار شبکه، دستیابی به بیشترین 
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صحت تشخیص در طبقه​بندی روی داده​های آموزش می​باشد. 

به​منظــور ارزیابــی رفتار تعمیمی شــبکه )در هــر دو حالت MLP و 
SCNN( روی داده​های مختلف و پیشــگیری از پیش​برازش شــبکه، از 
اعتبار​سنجی متقابل یکی را کنار بگذار )LOOCV(5 استفاده شده است. 
در این روش، مجموعۀ داده دارای N نقطه، N بار شــبکه تحت آموزش و 
آزمایش قرار می​گیرد بدین​ترتیب​که در هربار شبکه با N-1 نقطه آموزش 
داده شــده و با یک نقطه کنار گذاشته​شده، آزمایش می​شود. بدین​ترتیب 
درنهایت ماتریس سردرگمی با استفاده از نتایج به​دست​آمده از N آزمایش 
تک​نقطه​ای حاصل می​شــود. در مطالعۀ حاضر N=9 برابر با نه طیف به​

دست​آمده از سرطان​های متاستازیافته از منشأ​های متفاوت می​باشد.

یافته​ها
طیف​های به​دست​آمده پس از انجام پیش​پردازش در شکل 2 نشان داده 

5. Leave One Out Cross Validation

شــده است. در این شکل به​منظور وضوح بهتر، طیف​ها نسبت به یکدیگر 
شیفت داده شده و نیز طیف​های مربوط به سرطان متاستاز​یافتۀ معده، پستان 
و رودۀ بزرگ به​ترتیب با خط پر، نقطه​چین و خط​چین متمایز گشــته​اند.

ساختار شبکۀ MLP و SCNN استفاده​شده در طبقه​بندی طیف​های 
به​دست​آمده از متاستاز​های با منشأ​های متفاوت به​ترتیب در شکل 3 الف 
و ب نشان داده شده است. شبکۀ SCNN نشان​داده​شده در شکل 3 ب، 
نمونه​ای از شــبکۀ SCNN می​باشــد که روی کل طیف​ها تشکیل شده 
است. همان​طور​که پیش​تر گفته شــد، ساختار شبکۀ SCNN مطابق با 
داده​ها تغییر می​کند و در اینجا ساختار شبکۀ تولید​شده روی کل داده​ها 

به​عنوان نمونه، نمایش داده شده است.

 MLP ماتریس​های سردرگمی به​دست​آمده در طبقه​بندی با شبکه​های
و SCNN و اعتبار​ســنجی متقابل یک طیف را کنار بگذار، به​ترتیب در 
 جداول 1 و 2 نشــان داده شــده اســت. همان​طور​که از جداول مشاهده
می​شــود، درحالی​که نتیجۀ طبقه​بندی بــا MLP صحت غیرقابل​قبولی 

شــکلa :1) ماتریس هینتون شبکۀ b ،MLP) دیاگرام اتصالات شبکۀ c ،MLP) ماتریس هینتون شــبکۀ d ،SCNN) دیاگرام اتصلات شبکۀ SCNN. در تمام شکل​ها مواردی​که به​صورت 
خاکستری​رنگ نشان داده شده است، نشان​دهندۀ عدم قطعیت آن می​باشد.
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برابر 22 درصد ایجاد نموده است، صحت طبقه​بندی با شبکۀ SCNN به 
مقدار قابل قبول 89 درصد ارتقاء یافته است.

بحث
در این مطالعه مســئلۀ یافتن منشأ ســرطان​های متاستاز​یافته با منشأ 
اولیۀ نا​معلوم )CUP( توســط طیف​ســنجی رامان و شــبکه​های عصبی 
مصنوعی مورد بررسی قرار گرفت و موفق شدیم طیف​های رامان به​دست​

آمده از ســرطان​های متاســتاز​یافته به غدد لنفاوی از سه منشأ متفاوت 
معده، پستان و رودۀ بزرگ را با صحت 89 درصد متمایز سازیم. این نتایج 
با نتایج به​دســت​آمده با استفاده از بیان ژن در تشخیص مبدأ اولیۀ تومور 

که 85-90 درصد می​باشــد]1[، قابل رقابت است. و این در​حالی است که 
طیف​ســنجی رامان می​تواند به​صورت کاملًا غیرتهاجمی انجام شود. اگر​

چه بدیهی اســت جهت مقایسۀ دقیق این دو روش و اثبات برتری هر​یک  
نســبت به دیگری لازم است مطالعه​ای در شرایط کاملًا مشابه از​نظر سایر 

پارامتر​ها انجام گیرد.

شــبکۀ عصبی خود​سازنده )SCNN( که دارای ســاختار بهینه​شوندۀ 
منطبق با داده می​باشد، به​عنوان نسل جدیدی از شبکه​های عصبی در این 
 MLP مطالعه به​کارگرفته شــد و قدرت عملکرد آن در مقایسه با شبکۀ
رایج مورد ارزیابی قرار گرفت و نشــان داده شــد که با استفاده از شبکۀ 
SCNN نتایج بســیار مطلوب​تری از​نظر صحــت طبقه​بندی حاصل می​

شود. به​طوری​که این شبکه قادر شد که با وجود محل و حالت پاتولوژیکی 
)سرطانی بودن( یکســان تمام نمونه​ها به تفاوت​های منشأ آن​ها متمرکز 
شــود و با​وجود حجم کم داده​ها با تمرکز بر این تفاوت​ها تمایز مطلوبی را 

شکل2: طیف​های رامان به​دست​آمده از نمونه​ها پس از پیش​پردازش. طیف​های شمارۀ 1 تا 
3 )خط​چین( مربوط سرطان متاستازیافتۀ رودۀ بزرگ، شمارۀ 4 تا 6 )نقطه​چین( مربوط به 
سرطان متاستاز​یافتۀ پستان و شمارۀ 7 تا 9 مربوط به سرطان متاستاز​یافتۀ معده به غدد 

لنفاوی می​باشد.

شکل3: ساختار شبکه الف( MLP و ب( SCNN به​دست​آمده روی کل داده​ها

MLP جدول1:  ماتریس سردرگمی تمایز مبدأ متاستاز با

SCNN جدول2: ماتریس سردرگمی تمایز مبدأ متاستاز با
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حاصل نماید. علت این قدرت را می​توان در توانایی شبکۀ عصبی در یافتن 
مرز​های تمایز غیر غطی بین دسته​ها دانست که با برقراری امکان اتصالات 
بیشــتر از اعم از بازگشــتی و آبشاری در شــبکۀ SCNN قدرت شبکه 
در یافتن مرز​های پیچیده​تر تمایز بین دســته​ها افزایش می​یابد و توسط 
الگوریتم بهینه​سازی )الگوریتم ژنتیک( به مرز​های بهینه هدایت می​شود. 

مطالعۀ حاضر نشان داد که  بهره​گیری از طیف​سنجی رامان که اطلاعات 
بســیاری از ساختار مولکولی نمونه به​دســت می​دهد، به​همراه استفاده از 
روش​های مناســب هوش مصنوعی می​تواند در تشخیص بیماری و حتی 
مسائل بغرنجی همچون ســرطان​های متاستاز​یافته با منشأ اولیۀ نامعلوم 
)CUP( راه​حل​های عملی به​دست دهد و این در​حالی است که در روشی 
همچون شبکۀ عصبی مصنوعی که بدون نیاز به اطلاعات زمینه​ای چندان، 
به​صورت جعبه ســیاه عمل می​کند، نیاز به تفسیر داده​های نسبتاً پیچیدۀ 
به​دســت​آمده از طیف​سنجی نیز مرتفع می​شود و لذا برای استفاده از آن 
نیاز به آموزش و تخصص کمتر می​گردد و دسترســی عمومی به خدمات 

پزشکی را تسهیل می​نماید. 

از​جمله مشکلات مطالعۀ متاستاز، دستیابی به نمونه​های بافتی به جهت 
نرخ کمتر وقوع نسبت به سرطان​های غیر متاستاز​یافته و نیز اندازۀ نمونۀ 
کم در بسیاری از موارد است که از​جمله در این مطالعه موجب محدودیت 
در تعداد نمونه​ها شده است. که در این مطالعه با به​کار​گیری روش ارزیابی 
متقابل یکی را کنار بگذار سعی شده است تا این مشکل حتی​الامکان تأثیر 
کمتری بر نتایج و تعمیم آن داشته باشد. علاوه​بر​آن​که با​توجه به استفاده 
از نتایج آزمایش پاتولوژی به​عنوان اســتاندارد طلایی در مقایســه نتایج 
و عدم انجام هر​گونه جدا​ســازی و یا وارد نمــودن پارامتر​های جانبی در 
انتخاب نمونه​هــا، احتمال تکرار نتایج در​صورت انجام همین مطالعه روی 

جامعۀ آماری بزرگ​تر بیشتر می​شود.

مقایســۀ مطالعۀ حاضر با سایر مطالعات سرطان مبتنی بر رامان به​دلیل 
متفاوت بودن شــرایط اعم از نوع بافت، تعداد نمونه​ها، نوع طیف​سنجی، 
پیش​پردازش​ها، پردازش​های انجام​شده و ... عملًا ممکن نیست و به​علاوه 
بر​طبق جســتجو​های انجام​شده، مطالعۀ مشابهی در​خصوص تعیین منشأ 
ســرطان با استفاده از طیف​ســنجی رامان تا​کنون انجام نشده است. اما، 
در شــبیه​ترین مطالعات به مطالعۀ حاضر، طبقه​بندی بر​روی سرطان​های 
متاســتاز​یافته به مغز با اســتفاده از تصویر​برداری طیف​سنجی IR انجام 
شده اســت و نتایج امیدوار​کننده​ای با اســتفاده از خوشه​بندی تصاویر و 
سپس طبقه​بندی حاصل شده است]24و25[. لیکن در مطالعات ذکر​شده 
از تصویر​برداری IR استفاده شده است که طبیعتاً نیاز به طیف​سنجی​های 
بسیار بیشتر نســبت به طیف​سنجی نقطه​ای دارد و زمان طولانی​تری در 
ارزیابــی طلب می​کند. در​حالی​که در مطالعۀ حاضر صدر مطلوبی از تمایز 

با طیف​سنجی نقطه​ای حاصل شده است.

نتیجه​گیری
در مطالعۀ حاضر نشان داده شد که با به​کار​گیری الگوریتم​های مناسب 
هوش مصنوعی در پردازش طیف​های رامان می​توان از این تکنیک به​طور 
مؤثری در شناسایی منشأ اولیۀ سرطان​های متاستاز​یافته که نقش مهمی 
در طراحی درمان این سرطان​ها و در نتیجه نجات جان بیماران دارد، بهره 
برد. به​طور خاص در این مطالعه تمایز 89 درصد بین سرطان​های متاستاز​
یافته به غدد لنفاوی از سه منشأ معده، پستان و رودۀ بزرگ با بهره​گیری 
از شــبکۀ عصبی خود​ســازنده )SCNN( در تفکیک طیف​های رامان به​

دست​آمده از نمونه​ها ممکن شد.
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