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خلاصه

مقدمه: با افزایش خطر ناشی از ارگانیسم​های مقاوم به دارو ضروری است به​دنبال راهکارهایی 
بــرای جلوگیری از ظهــور عفونت​های مقاوم و غیر قابل درمان باشــیم. این راهکارهای جدید 
باید غیر تهاجمی باشــند و کارآمد​تر و ســریع​تر از آنتی​بیوتیک​های رایج عمل کنند. یکی از 
رویکردهای امید​بخش، درمان فتودینامیکی ضد میکربی اســت که شــامل استفاده از رنگ​ها 
)حساسگرهای نوری( غیر سمی است که در مجاورت نور مرئی برانگیخته می​شوند و در حضور 
اکسیژن، رادیکال​های آزاد اکسیژن تولید می​کنند. گونه​های واکنشگر اکسیژن می​توانند تمام 
کلاس​های میکروارگانیســم​ها )باکتری​ها، ویروس​ها، قارچ​ها و انگل​ها( را از بین ببرند. انتخابی 
بودن کشتن سلول​های میکربی در مقابل سلول​های نرمال میزبان اجازه می​دهد تا این رویکرد 
به​عنــوان یک راهکار درمانی دیگر برای عفونت​های موضعی خصوصاً عفونت​های مقاوم به دارو 

کاربرد داشته باشد.

یافته​ها: تفاوت در ســاختار ســلولی کلاس​های مختلف میکربی، در برهم​کنش حساســگر 
نوری با بخش​های مختلف سلولی تأثیر​گذار است و می​تواند بر کارآیی و مکانیسم عمل درمان 
فتودینامیکی ضد میکربی با عوامل بیماریزای مختلف اثر گذارد. همچنین باکتری​ها مکانیســم​

هایی را دارند تا به استرس اکسیداتیو ناشی از aPDT پاسخ دهند. 

نتیجه​گیری: بنابراین کارآیی این روش را می​توان با اســتفاده از حساسگرهای نوری جدید، 
حاملین حساســگر نوری )که رهایش آن را بهبود می-بخشند( و استراتژی​های تقویت واکنش​

های فتوشیمیایی افزایش داد و سپس کاربردی بودن این روش را ارزیابی کرد.

واژه‌های كليدی: درمان فتودینامیکی ضد میکربی، مکانیســم​های فتوشیمیایی، رها​سازی 
دارو، پاسخ به استرس اکسیداتیو، تقویت درمان فتودینامیکی ضد میکربی، عفونت​های موضعی
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مقدمه
با کشــف آنتی بیوتیک​هــا در دهۀ 1950، معجزه​ای در علم پزشــکی 
برای درمان بیماری​های عفونی رخ داد. اما، چندی نگذشــت که مقاومت 
دارویــی در باکتری​ها به​عنوان معضل دیگری خود را نشــان داد]1[. در 
ســال 2015، گزارش O’Neil جهان را متوجــه این مطلب کرد که اگر 
هم​اکنون راهکاری برای مقابله با باکتری​های مقاوم به دارو یافت نشــود، 
تا ســال 2050 دنیا با حدود 300 میلیون مورد مرگ مواجه خواهد شــد 
که برای اقتصاد جهانی مبلغ 100 تریلیون دلار هزینه به​همراه دارد]2[. 

افزایش جهانی مقاومت دارویی باکتری​های بیماریزا در سرتاســر دنیا و 
 کاهش تلاش برای دستیابی به عوامل ضد میکربی جدید، درمان بیماری​های
عفونی را با مشــکل مواجه کرده است. لذا، باید به​دنبال کشف روش​های 
درمانی جدیدی بود که از نظر ایمنی و کارآیی مطلوب باشــند و سریع​تر 
از آنتی​بیوتیک​های رایج اثر کنند و حداقل امکان مقاومت نســبت​به آن​ها 
وجود داشته باشد]3[. یکی از راهکارهای جایگزین و امید​بخش در آینده، 

درمان فتودینامیکی ضدمیکروبی است. 

تاریخچه

درمان فتودینامیکی ضد میکربی )aPDT( در سال 1990، توسط یک 
دانشجوی پزشکی به  نام اسکار راب کشف شد. او مشاهده کرد هنگامی که 
پارامســی )میکروارگانیسم​ تک​سلولی( با رنگ فلورسنت آکریدین نارنجی 
انکوبه می​شــود و در معرض نور قرار می​گیــرد، ازبین می​رود، درحالی​که 
میکروارگانیسم​هایی که در تاریکی نگهداری می​شوند، زنده می​مانند]4[. 
پس​از کشــف ایــن موضوع که این پدیده نیازمند اکســیژن اســت، واژۀ 
"فتودینامیک" انتخاب شد]5[. در سال 1910، محققان پی بردند که از اثر 
فتودینامیکی می​توان به​عنوان یک درمان پزشکی برای تخریب بافت​های 
ناخواستۀ بیولوژیک مانند سرطان​های پوست استفاده کرد]6[. استفاده از 
PDT به​عنــوان درمانی برای عفونت​های باکتریایی در ســال 1940 و با 
 کشف آنتی​بیوتیک​هایی چون پنی​ســیلین به فراموشی سپرده شد]7[ و
به​جای استفاده از PDT به​عنوان یک عامل ضد میکربی قوی، این درمان 

به​شکل وسیع برای درمان سرطان​ها به​کار برده شد]8[. 

مکانیسم عمل درمان فتودینامیکی  

 مکانیسم عمل هنوز به​شکل کامل مشخص نیست، اما این مطلب به​خوبی
روشن اســت که جذب یک فوتون نور توسط یک رنگ )حساسگر نوری، 
PS( منجر به برانگیخته شــدن آن می​شود. PS برانگیخته )پایدار درحد 
نانوثانیه( بــا انتقال الکترون بــه حالت پایدارتر ســه​گانه )پایدار در حد 
میکروثانیه( می​رســد. این حالت پایدارتر کمک می​کند تا PS با اکسیژن 
واکنش دهد که می​تواند از دو مسیر متفاوت فتوشیمیایی )تیپ1 و تیپ2( 
 اتفاق افتد. در مســیر تیپ1، انتقال الکترون منجر به تولید رادیکال​های

سوپراکسید و ســپس هیدروکسیل می​شــود. در​حالیکه درمسیر تیپ2، 

انتقــال انــرژی منجر به تولید اکســیژن نــوزاد می​شــود. رادیکال​های 
هیدروکسیل و اکســیژن نوزاد، هر دو گونه​های بسیار واکنش​گر اکسیژن 
 )ROS( هستند که می​توانند تقریباً به تمامی بیومولکول​ها )پروتئین​ها،
لیپیدها و اســیدهای نوکلئیک( آســیب برســانند و ســلول​ها و هر نوع 
میکروارگانیســمی )باکتری​های گرم مثبت و منفی، ویروس​ها، قارچ​ها و 
انگل​ها( را از بین ببرند. شــکل1، دیاگرام جابلونســکی را نشان می​دهد 
که چگونگی تولید فتوشیمیایی ROS های مختلف را درحین PDT به 

نمایش می​گذارد]9[.

درمان فتودینامیکی ضدمیکربی

در دهۀ 1990 پیشــنهاد شد که PDT می​تواند به​عنوان یک عامل ضد 
میکربی قوی عمل کند، به شــرطی که PS طوری طراحی شــود که به 
شکل انتخابی به سلول​های میکربی متصل شود و این اتصال به سلول​های 
نرمال میزبانی اتفاق نیفتد]10[. بهترین روش برای رسیدن به این هدف، 
داشتن PS با بار مثبت است، زیرا به​نظر می​رسد سلول​های میکربی درکل، 
درمقایســه با سلول-های پســتانداران، دارای بار منفی هستند. بنابراین، 
PS کاتیونی به​شــکل انتخابی به آن​ها متصل می​شــود. به​علاوه، اتصال 
PS به ســلول میکربی نسبتاً سریع اســت، در​حالیکه جذب PS کاتیونی 
توسط سلول​های پســتانداران به کندی اتفاق می​افتد. بنابراین، هنگامی​

که زمان انکوباســیون با رنگ کوتاه باشــد )چند دقیقه(، رنگ به شــکل 
 انتخابی عمل خواهد کــرد]11[. رنگ​های فنوتیازینی )همانند متیلن​بلو(

که در آب محلول هستند و در pH فیزیولوژیک دارای بار مثبت می​باشند، 
اغلب به​عنوان PS در aPDT اســتفاده می​شوند. تتراپیرول​های کاتیونی 

همانند پورفیرین​ها و فتالوسیانین​ها نیز در aPDT کاربرد دارند]12[. 

فواید درمان فتودینامیکی ضدمیکربی

فوایــد aPDT به​عنوان یک درمان ضد میکربی بالقــوۀ بالینی، زمانی 
مشــخص شــد که محققان نشــان دادند aPDT قادر است سلول​های 
میکربــی را صرف​نظــر از وضعیت مقاومــت آنتی​بیوتیکــی آن​ها از بین 
ببرد]13[ و همچنین تاکنون هیچ​گونــه مقاومتی در باکتری​ها علیه این 
روش مشاهده نشده است]14[. فایدۀ دیگر این روش این است که رنگ به​

شکل1: اساس درمان فتودینامیکی در دیاگرام جابلونسکی )برگرفته از مرجع شمارۀ 9(
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 شکل موضعی بر​روی منطقۀ عفونی استفاده می​شود. بسیاری از عفونت​های
مزمن، درگیر بیوفیلم​های میکربی هســتند کــه تجویز آنتی​بیوتیک​های 
سیستمیک نیز برای از بین بردن این ساختارهای میکربی کارآمد نیست. 
در​حالیکه aPDT برای کشــتن سلول​های موجود در بیوفیلم نیز کارآیی 
نشان داده است]15[. کاربرد ضد بیوفیلمی در عفونت​های دندانی همانند 
پریودنتیت استفادۀ خاص دارد]16[. همچنین در عفونت​های سوختگی یا 
بافت​های آسیب​دیده، خونرسانی دچار نقص می​شود و تجویز سیستمیک 
آنتی​بیوتیک​هــا نیز در منطقــۀ عفونت به غلظت​های کافی نمی​رســد. 
اســتفاده از aPDT در چنین عفونت​هایی که احتمال گســترش سریع 
عفونت وجود دارد، می​تواند امیدبخش باشــد. زیرا کشــتن میکرب​ها به​
واســطۀ aPDT بسیار ســریع )در حد چند ثانیه( است، در​حالیکه عمل 
آنتی​بیوتیک​ها می​تواند ساعت​ها یا روزها به​طول انجامد. به​علاوه، ماهیت 
وســیع​الطیف بودن aPDT به این معنی اســت که این درمان می​تواند 
قبل از آنکه عامل عفونی شناســایی شود، آغاز گردد]17[. گرچه بسیاری 
از عفونت​ها در مناطق عمقی​تــر بدن رخ می​دهند، اما امروزه، این امکان 
وجــود دارد که رنگ و نور تقریباً به هر منطقۀ آناتومیکی رها شــوند. این 
امر به​واســطۀ اندوسکوپ​ها، سوزن​های بســیار ریز و فیبرهای نوری قابل 

انجام است]18[.  

منبع نور و سیستم​های رهایش آن

یک اصل مهم در PDT این اســت که به​طور کلی، طول​موج منبع نور 
باید با ماکزیمم جذبPS  تنظیم شــود. طول​موج​های بلندتر در مقایسه 
با طول​موج​هــای کوتاه​تر برای کاربردهای بالینی ترجیح داده می​شــوند 
 PDTزیرا نفوذ بهتری درون بافت دارند. طول​موج​های مورد اســتفاده در
شــامل مافوق بنفش A )400-330 نانومتر(، آبی )490-400 نانومتر(، 
ســبز )550-490 نانومتر(، زرد )600-550 نانومتر(،  قرمز )600-700 

نانومتر( و نزدیک مادون قرمز  )810-700 نانومتر( هستند]19[. 

زمانی​که PDT در دهۀ 1970 در بالین اســتفاده شد، کاربرد لیزر​ها به​
عنوان منبع نــوری معمول بود. ماهیت تک​رنگ نور و اشــعۀ متمرکز از​
جمله مزیت​های استفاده از لیزرها است. امروزه، دیودهای ساتع​کنندۀ نور 
)LEDs( به​علت فواید آن​ها )ایمن، ارزان و راحتی در کار( مورد استقبال 

قرار گرفته​اند]19[. 

بافت زنده هم نور مرئی را جذب می​کند و هم منعکس می​کند. جذب و 
 انعکاس نور با افزایش طول موج کاهش می​یابد. از طرف دیگر، انواع بافت​ها
خصوصیات نوری متفاوتی دارنــد. بنابراین از​آنجایی​که نفوذ نور به درون 
برخی بافت​ها با مشــکل مواجه می​شود، روش​های جدیدی برای رهایش 
نور به بافت​های عمقی​تر بدن طراحی شــده اســت. بسیاری از ارگان​های 
بدن که دچار آســیب​های عفونی یا بدخیمی شــده​اند، از​طریق لوله​هایی 
)هماننــد مری، نای/برونــش، روده یا مجرای ادراری( بــه محیط بیرون 
راه دارند. امروزه، اندوســکوپ​هایی طراحی شــده​اند تا نور را از این راه به 

اعماق بدن برســانند]20[. همچنین با استفاده از فیبرهای نوری، رهایش 
نور به شــکل مســتقیم به بافت​های عمقی​تر امکان​پذیر شده است]21[. 
یکی دیگر از روش​های نوین، تفکر اســتفاده از منابع نوری LED بدون 
 ســیم اســت]22[. این ابزار در ابتدا برای کاربردهای اپتوژنتیک )رهایی

طولانی​مدت نور آبی به مغز موش​های آزمایشگاهی( طراحی شدند]23[. 
با این وجود، استفاده از این ابزار برای PDT با نور قرمز یا نزدیک مادون 

قرمز امکان​پذیر است.

حساسگر نوری و سیستم​های رهایش آن

یک PS ایدئال برای aPDT باید دارای خصوصیاتی باشــد که از​آن​جمله 
می​توان به موارد زیر اشــاره کرد: تولید محصولات واکنش​های فتوشیمیایی 
بــا بهرۀ بالا، یک مادۀ خالص با ترکیب پایدار، محلول در آب، ترجیحاً دارای 
بار مثبت، انتخابی برای سلول​های هدف، ایمن و غیرسمی برای سلول​های 
نرمال میزبان]PSs.]24  جدید که می​توانند شرایط یک PS ایدئال را داشته 

باشند، عبارت​اند​از: پلیمرهای پلی​کاتیونی، فولرن​ها و باکتریو​کلرین​ها]25[.

بسیاری از PSs از​جمله پورفیرین​ها، کلرین​ها و فتالوسیانین​ها به​شدت 
لیپوفیل هستند و تمایل دارند در محیط​های آبی در شرایط فیزیولوژیک 
تجمع یابند و این امر منجر به کاهش فعالیت PS می​شود]26[. بنابراین 
یکی از مشــکلات مهم در aPDT ، اپتیمم کردن رهاســازی PS است. 
 مطالعات مختلف، حاملین مناسبی را برای PS گزارش کرده​اند که رها​سازی
PS را افزایش می​دهند از آن​جمله لیپوزوم​ها]27و28[، میســل​ها]29[ و 

نانوذرات]32-30[ را می​توان نام برد)شکل 2(.

نانو​ذرات، با ابعاد حدود 200-1 نانومتر قادرند از بســیاری از ســدهای 
بیولوژیــک عبور کننــد و محتویات خود را به مولکول​ها و سیســتم​های 
بیولوژیک حیاتی برسانند، بنابراین رهایش دارو را در منطقۀ هدف افزایش 
می​دهند و فواید درمانی زیادی را به​دنبال دارند. استفاده از نانو​ذرات برای 
رهایش PS به میکروارگانیســم​ها و افزایــش کارآیی aPDT می​تواند از 
چند روش انجام شــود: کپسوله​کردن PS درون نانو ذرات، اتصال کوالان 

PS به سطح نانو ذرات و یا مخلوط کردن PS و نانوذرات]19[. 

لیپوزوم​ها به​شکل معمول برای کپسوله​کردن PSs لیپوفیل استفاده شده​
اند و افزایش کارآیی aPDT را با انواعی از PSs نشــان​داده​اند. لیپوزوم​ها 
حلالیــت و پایداری PSs را افزایش می​دهنــد و نفوذ PS به باکتری را به​
واسطۀ فرآیند فیوژن یا آسیب به دیوارۀ سلولی تسهیل می​کنند]27و28[.

سیستم​های رهایش به​واسطۀ میسل​های پلیمریک نیز می​توانند حلالیت 
دارو را افزایش دهند. در مقایسه با لیپوزوم​ها، تهیۀ میسل​های پلیمریک، 

ارزان​تر و آسان​تر است]29[.

یکی دیگر از روش​های رهایش دارو، اســتفاده از ســوزن​های بسیار ریز 
)microneedles( است. در درمان زخم​های مزمن، اغلب به​علت وجود 
یک لایۀ ضخیم هایپرکراتوتیک و یا بافت نکروتیک، رهایش PS با مشکل 
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مواجه می​شود و از کارآیی درمان می​کاهد. سوزن​های بسیار ریز می​توانند 
بدون آنکه باعث ایجاد درد یا آســیب بافتی شــوند، به لایه​های خارجی 
پوســت نفوذ کنند]33[. اندازۀ طولی این سوزن​ها 2000-25 میکرومتر 
اســت و به​گونه​ای طراحی شــده​اند که حدود 2000 سوزن در هر سانتی​
متر​مربع قرار می​گیرند]34[. رها​سازی PS توسط این ساختار، بدون درد، 

با کاهش قرمزی و افزایش رهایش داخل پوستی همراه بوده است]35[.

آسیب سلول میکربی ناشی از درمان فتودینامیکی ضدمیکربی

چنین به​نظر می​رسد که ROS ایجاد​شده از​طریق PS فعال​شده می​تواند از 
خلال سه مکانیسم باعث کشته شدن میکرب​ها و تخریب سلولی آن​ها شود:

1. آسیب به غشاء سلولی )یا پوشش ویروس(

2. غیرفعال​کردن آنزیم​ها و پروتئین​های ضروری

]36[ DNA 3. آسیب به

آســیب ناشــی از aPDT می​تواند منجر بــه تغییــرات عملکردی و 
مورفولوژیکــی قابل ملاحظه​ای در ســلول​های میکربی شــود. تغییرات 
عملکردی منجر به از دســت رفتن فعالیت​های آنزیماتیک، اکسیداسیون 
پروتئین​هــا و ممانعت از فرآیندهای متابولیک )همانند ســنتز DNA و 
انتقال گلوکز( می​شــود. تغییرات مورفولوژیک شــامل تغییر در ساختار 
مزوزوم است. آسیب مستقیم به غشاء سلولی، باعث نشت محتویات سلول 

و غیرفعال​شدن سیستم انتقال غشایی می​شود]37[.

تفاوت چشمگیری در ساختار سلولی کلاس​های مختلف میکربی وجود 
دارد. این تفاوت ساختاری در برهم​کنش PS اگزوژن با بخش​های مختلف 
سلولی تأثیر​گذار اســت و می​تواند بر کارآیی و مکانیسم عمل aPDT با 
عوامل بیماری​زای مختلف، اثر گذارد. تفاوت در دیوارۀ سلولی باکتری​های 
 aPDT گرم مثبت و گرم منفی نقش مهمی در حساســیت باکتری​ها به
دارد. باکتری​هــای گرم مثبت دارای چندین لایــۀ پپتیدو​گلیکان ضخیم 

و متخلخل هســتند که اطراف غشاء سیتوپلاســمی را پوشانده است، در​
حالیکه باکتری​های گرم منفی دارای یک غشــاء خارجی، یک لایۀ نازک 
پپتیدوگلیکان و غشاء داخلی هســتند]38[. برای انجام aPDT کارآمد، 
رنــگ باید به دیواره نفوذ کند و یا حداقل به آن اتصال یابد و در​نهایت به 
غشاء پلاســمایی یا درون سیتوپلاسم برسد. سدهای غشایی باکتری​ها از 
انتشــار سادۀ رنگ به درون سیتوپلاســم ممانعت می​کنند]39[. بنابراین 
aPDT باکتری​های گرم مثبت راحت​تر از باکتری​های گرم منفی اســت. 
دیوارۀ ســلولی قارچ​ها ســاختاری دارد که از​نظر نفوذپذیری حد واســط 
باکتری​های گرم مثبت و گرم منفی است. بخش خارجی، یک لایۀ نسبتاً 
متخلخل از پلی​ســاکاریدهای گلوکان و مانان اســت. شکل 3 یک طرح 

شماتیک از سه ساختار سلولی متفاوت را نشان می​دهد]19[.

aPDT مکانیسم​های تعیین​کنندۀ حساسیت باکتری​ها به

مهم​ترین مولکول​هایی که به​واســطۀ aPDT استرس اکسیداتیو را در 
باکتری​ها القاء می​کنند، اکسیژن نوزاد، رادیکال​های هیدروکسیل، آنیون​

 ROSs های سوپراکســید و هیدروژن پراکســید هســتند. میزان تولید
مختلف، به منشــأ شــیمیایی PS و ریز محیط آن بســتگی دارد]14[ و 
آسیب ناشــی از aPDT به محل قرارگیری PS وابسته است. این به آن 
معنی است که اگر PS تنها به سطح باکتری اتصال یابد، آسیب اکسیداتیو 
پروتئین​ها و اســیدهای چرب، تنها در محل قرارگیری ظاهر می​شود که 
 ROS این امر ناشی از واکنش​گری زیاد، نیمه​عمر کوتاه و انتشار محدود

تولید شده است]40[. 

در​هر​حال باکتری​ها مکانیســم​هایی را دارند تا به اســترس​های ناشــی 
از aPDT پاســخ دهند. این مکانیســم​ها عبارت​اند​از: تولید رنگدانه​های 
حفاظتــی )هماننــد رنگدانه​هــای Pseudomonas aeruginosa و 
رنگدانۀ کاروتنوئیدی Staphylococcus aureus(، تولید کپسول پلی​

ساکاریدی، پمپ​های دفع دارو و آنزیم​های آنتی​اکسیدان )همانند کاتالاز 
و سوپر​اکسید​دیسموتاز(]9[. 

شکل2: حاملین PS که برای افزایش رهایش دارو به​کار برده می​شوند )برگرفته از مرجع شمارۀ 19(
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افزایش کارآیی درمان فتودینامیکی ضد میکربی

روش​هایــی که برای افزایش کارآیی aPDT در مقابل باکتری​های گرم 
مثبــت و گرم منفی در مطالعات مختلف انجام شــده اســت عبارت​اند​از: 
 استفاده از ممانعت​کننده​های پمپ​های دفع دارو و اضافه​کردن نمک​های
غیرآلــی]19[. از​آنجایی​کــه رنگ​هــای فنوتیازینیوم )ماننــد متیلن​بلو( 
سوبســترایی برای پمپ​های دفع دارو در باکتری​ها هســتند، استفاده از 
 aPDT ممانعت​کننده​های این پمپ​ها می​تواند باعث افزایش اثر کشندگی
با رنگ​های فنوتیازینی شــود]43-41[. همچنین مطالعات مختلف نشان 
داده​اند که اضافه کردن نمک​هایی چون آزید، تیوســیانات، یدید و برومید 
می​تواند در شــرایط آزمایشــگاهی کارآیی aPDT را افزایش دهد]19[. 
از بین این نمک​ها، یدید​پتاســیم قوی​ترین، ارزان​ترین و غیر​ســمی​ترین 
نمک است و از​آنجایی​که برای درمان​های ضد قارچی مجوز دارد، احتمال 

استفادۀ بالینی از آن در aPDT تقویت می​شود]12[. 

aPDT برای درمان عفونت​های موضعی

PS با عملکــرد انتخابی و همچنین تابش​دهی موضعی، از​جمله مزایای 
اســتفاده از aPDT در درمان بیماری​های عفونی موضعی همانند عفونت 
زخم است]44[. چندین آزمون بالینی، aPDT را برای درمان عفونت​های 
زخم به​کار برده​اند]49-45[. برای مثال در مطالعه​ای که در ســال 2013 

شکل3: ساختار ســلولی باکتری​های گرم مثبت و گرم منفی و قارچ​ها )برگرفته از مرجع 
شمارۀ 19(

 انجام گرفت، aPDT به​عنوان یک درمان ضد میکربی جدید برای زخم​های
مزمــن پا و زخم​هــای پای دیابتی اســتفاده شــد]49[. در این مطالعه، 
PP904 به​عنوان PS به​کار برده شد. 16 بیمار با زخم​های مزمن پا و 16 
بیمــار با زخم​های پای دیابتی )هر گروه شــامل 8 نفر درمان فعال/8 نفر 
درمان پلاســبو( در این مطالعۀ بالینی شرکت کردند. تمام بیماران دارای 
زخم مزمن )بیش از 3 ماه( بودند که با CFU/ml 104>  باکتری کلونیزه 
شده بود. پس از شمارش بار میکربی، PP904 یا پلاسبو به​شکل موضعی 
بر​روی زخم​ها به​مدت 15 دقیقه اســتفاده شدند و به​دنبال آن تابش​دهی 
با نور قرمز )J/cm2 50( انجام شد. مجدداً از زخم برای شمارش میکربی 
نمونه​گیری شد. محیط زخم تا 3 ماه پس از درمان اندازه​گیری شد. درمان 
بدون هیچ گزارشی از درد، به​خوبی تحمل شد. در مقایسه با گروه پلاسبو، 
بیمارانی که درمان فعال را دریافت کــرده بودند، بلافاصله پس از درمان 
کاهش بار میکربی را نشــان دادند )p> 0/001(. پس از 3 ماه، 50 درصد 
از بیماران دارای زخم مزمن پا )4 نفر از 8 نفر(، در مقایسه با گروه پلاسبو 

)12/5 درصد، یک نفر از 8 نفر( التیام کامل زخم را نشان دادند.

در مطالعه​ای دیگردر ســال 2015، فعالیت ضدمیکربی aPDT با رنگ 
آمینو​لوولونیک​اســید )ALA( و اثر آن بر التیام زخم​های مزمن پوســتی 
آلوده به Pseudomonas aeruginosa بررســی شــد. سطح زخم​های 
 بیماران با ALA-aPDT یا نــور قرمز به​تنهایی، یک​بار در هفته به​مدت
 دو​هفتــه تیمار شــد. قبل از تیمار، مســاحت زخم و تعــداد باکتری​های
آلوده​کنندۀ زخم در هردوگروه تقریباً یکســان بود. نتایج مطالعه نشان داد 
تعــداد باکتری​ها در زخم​هایی که تنها با نور قرمز تیمار شــده بودند، 24 
 ساعت پس از درمان تفاوت معنی​داری با پیش از درمان نداشت، درحالی​که
ایــن تعداد در گروه aPDT کاهش یافــت. همچنین 7 روز پس از درمان، 
میانگین مســاحت زخم در گروه aPDT در مقایسه با گروه دیگر کاهش 
بیشتری نشان داد. التیام زخم نیز در گروه aPDT بهتر انجام شده بود]45[.

 بیماری​های دهان و دندان نیز به​خوبی با aPDT و با استفاده از رنگ​های
معمول درمان شــده​اند]54-50[. پلاک​های دندانــی یکی از علل اصلی 
بیماری​های دهانی هســتند. گرچه روش​های شیمیایی و مکانیکی برای 
کنترل تشــکیل پلاک اســتفاده می​شــوند،  بیماری​های مرتبط با پلاک 
دندانی همچنان وجود دارند. aPDT می​تواند به​عنوان ابزار دیگری برای 
کنترل این عفونت​ها به​کار رود. برای مثال، در مطالعه​ای در سال 2017، 
 کارآیــی بالینی این روش با رنگ اریتروزین بر​روی میکروارگانیســم​های

هوازی پلاک​های دندانی بیماران ارزیابی شــد. نتایج نشــان داد که این 
تیمار، شــمارش میکربی را کاهش می​دهد و می​تواند به​عنوان یک راهکار 
پیشــگیرانه و درمانی در کلینیک​های دندانپزشــکی به​کار رود]53[. در 
تحقیقــی دیگر، اثر​های بالینــی aPDT به​همراه جراحــی برای درمان 
پریودنتیت مزمن ارزیابی شــد. نتایج  این مطالعه نشــان داد که تنها یک​
بــار aPDT به​همراه درمان جراحی عوامــل بیماری​زای دهانی - دندانی 

)Treponema denticola( را حذف می​کند]54[.
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 PDT برای درمان لشمانیازیس جلدی]55[،پاراکوکسیدیودومایکوزیس
]56[ و آکنه وولگاریس]57[ نیز به​شکل کارآمد استفاده شده است.

نتیجه​گیری
aPDT یک رویکرد جدید و امید​بخش برای غیرفعال​کردن و پاکسازی 
عوامل بیماری​زا اســت. از​آنجایی​که مقاومت دارویی به​عنوان یک معضل 
جهانی رو به افزایش اســت، این روش می​تواند به​زودی در سطح گسترده 
به بالین معرفی شــود، اما، ضروری اســت که کارآیی این روش به​شــکل 
کاربردی ارزیابی شــود. بنابراین، اســتفاده از PSs جدید، استراتژی​های 
جدید تقویت واکنش​های فتوشــیمیایی و اســتفاده از مدل​های حیوانی 

مناسب می​تواند در این زمینه کمک​کننده باشد.
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