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خلاصه

رادیکال​ه��ای آزاد اکس��یژندار )ROS( و رادیکال​ه��ای آزاد نیتروژن��دار )RNS(، به​عن��وان 
محصولات جانبی متابولیس��م به​طور مداوم در سیستم​های بیولوژیکی تولید و منجر به آسیب 
DNA، پروتئین​ها و لیپیدها می​ش��وند. مطالعات اخیر حاک��ی از نقش ROS در واکنش​های 
آنزیمی، انتقال پیام و فعال​شدن عوامل نسخه​برداری هسته​ای می​باشد. زنجیرۀ انتقال الکترون 
  P450اکسیداز موجود در غشاء سلول​های فاگوسیت​کننده، سیتوکروم NADPH ،میتوکندری
مونواکسیژناز شبکۀ آندوپلاسمی، گزانتین اکسیداز، واکنش فنتون و هابر- ویس مسئول تولید 
"ROS در سیستم​های سلولی می​باشند. ROS عملکرد پروتئین​ها را از طریق تنظیم پروتئین​های

حساس به اکسیداس��یون- احیا، بیان ژن، پروتئین​های اتصالی حساس به اکسیداسیون احیاء، 
آنزیم​های تغییر-دهندۀ حس��اس به اکسیداس��یون- احیاء و تنظیم ترن اور پروتئین تغییر می​

دهد. س��لول​های سرطانی به​دلیل شرایط هیپوکسی، جهش ژن​های هسته​ای و میتوکندریایی، 
 ROS فعال​ش��دن انکوژن​ها و از​دست​رفتن ژن​های سرکوبگر تومور، نسبت​به سلول​های نرمال
بیشتری تولید می​کنند. در سلول​های سرطانی، سطح پایین تا متوسط  ROS برای نمو، تمایز 
و بقاء س��لولی ضروری می​باشد ولی در سطوح بالا منجر به مرگ سلولی می​شود. شواهد اخیر 
حاکی از نقش ROS به​عنوان پیام​رس��ان در تهاجم سلول​های توموری، رگزایی و متاستاز می​
باش��د. این مقالۀ مروری بر منابع تولید رادیکال​های آزاد، پیامدهای افزایش ROS در سلول​ها 

و نقش آن در عملکرد سلول​های سرطانی تأکید دارد.

واژه‌های كليدی: استرس اکسیداتیو، سرطان، NADPH اکسیداز، انکوژن

 [
 D

ow
nl

oa
de

d 
fr

om
 ic

m
l.i

r 
on

 2
02

6-
01

-2
9 

] 

                             1 / 15

http://icml.ir/article-1-381-en.html


زهــرا محمـدی آبـگـرمــی و همـکـاران            31

مقدمه
 رادیکال آزاد حاصل شکستگی نابرابر پیوندهای یک مولکول پایدار می​باشد

و خود اتم یا یونی است که دارای یک یا چند الکترون جفت نشده باشد]1[. 
رادیکال​های آزاد در پاتوژنز انواع بیماری​ها از​قبیل س��رطان، بیماری​های 
نرودژنراتی��و، دیابت، پی��ری و ... نقش مهمی دارن��د]2[. این ترکیبات به 
انواع مولکول​ه��ای بیولوژیک حمله می​کنند و باعث تغییرات س��اختاری 
و بیوش��یمیایی آن​ها می​ش��وند]3[. اغلب تصور بر این است که گونه​های 
رادیکالی مش��تق از اکس��یژن گروهی از مولکول​ها را تشکیل می​دهند که 
به س��لول​ها، بافت​ها و ارگانیزم​ها آسیب می​رسانند، با این حال تحقیقات 
دو دهۀ اخیر حاکی​از نقش آن​ها به​عنوان پیامبر ثانویه در مسیرهای پیام​
رس��انی سلولی می​باش��د. این گونه​ها درمتابولیسم و عملکردهای سلولی، 
القاء آپوپتوز، القاء ژن​های دفاع میزبانی، فعالیت سیس��تم​های انتقال یون، 
فراخوان��ی پلاکت​ها به محل زخم و انواع پاس��خ​های التهابی نقش مهمی 
 1)ROS( دارند و عمدتاً به دو صورت رادیکال​های آزاد مش��تق از اکسیژن

و مشتق از نیتروژن )RNS(2 تقسیم​بندی می​شوند]4[.

رادیکال​های آزاد مهمی که در فرآیند ایجاد بیماری نقش دارند، گونه​های 
مش��تق از اکسیژن مولکولی می​باشند که شامل رادیکال​های سوپراکساید 
 )RO˙( الکوکسیل ،)RO˙2( پراکس��یل ،)˙OH( هیدروکس��یل ،)O˙2(
و هیدروپراکس��یل )HO˙2( می​باش��ند. برخی مولکول​ها مانند پراکسید 
 )1O2( و اکسیژن منفرد )HOCL-( اسید هیپوکلرو ،)H2O2( هیدروژن
با اینکه از لحاظ شیمیایی رادیکال آزاد نیستند ولی عملکرد آن​ها همانند 
رادیکال​های آزاد می​باش��د. در​کل، به رادیکال​های آزاد مشتق از اکسیژن 
و همچنی��ن ترکیبات غیررادیکالی مش��تق از آن اصطلاحاً گونه​های فعال 
اکسیژن گفته می​ش��ود. مهم​ترین گونه​های فعال نیتروژن شامل رادیکال 

نیتریک اکساید )˙NO( و پراکسی​نیتریت )-ONOO( می​باشند]5[.

منابع اندوژن و اگزوژن رادیکال​های آزاد

میتوکن��دری مهم​ترین منب��ع تولید ROS می​باش��د]ROS .]6-8 به​
 I عنوان محصول جانبی فرآیند فسفریلاس��یون اکس��یداتیو در کمپلکس
)NADH- کوآنزی��م Q( و III )کوآنزیمQH2 س��یتوکروم C ردوکتاز( 
زنجی��رۀ انتق��ال الکترون تولی��د و به فضای بین دو غش��اء میتوکندری و 
ی��ا ماتریک��س میتوکندری آزاد می​ش��ود]9[. منافذ انتقال��ی نفوذپذیری 
میتوکن��دری )mPTP(3 و غش��اء بیرون��ی میتوکن��دری باع��ث نش��ت 
سوپراکس��اید به سیتوپلاس��م می​شود. آنیون سوپراکس��اید در ماتریکس 
میتوکندری به​وس��یلۀmnSOD  و در سیتوپلاسم و فضای بین دو غشاء 
میتوکندری به​وس��یلۀ Cu/ZnSOD  دیس��موته می​گردد و پراکس��ید​

.]4[ )1-a هیدروژن تولید می​شود )تصویر

1. Reactive Oxygen species
2. Reactive Nitrogen species
3. Mitochondrial Permeability Transition pore

منبع دیگر ROS آنزیم​های اکس��یژناز می​باش��ند که با انتقال اکسیژن 
مولکولی به سوبس��ترا باعث اکس��ایش آن می​ش��وند. مونواکس��یژنازها یا 
اکس��یدازهای با عملکرد مختلط، آنزیم​هایی هس��تند که یکی از اتم​های 
اکس��یژن مولکولی را به سوبسترا منتقل و اتم دیگر را به​صورت آب احیاء 
می​کنن��د. مهم​ترین مونواکس��یژناز، س��یتوکروم P450 اکس��یداز موجود 
در غش��اء ش��بکۀ اندوپلاسمی می​باش��د که با هیدروکس��یله​کردن دستۀ 
وس��یعی از مولکول​های اندوژن و اگزوژن باعث س��م​زدایی آن​ها می​گردد 
و ضم��ن این فرآینده��ا رادیکال​های آزادی مانند سوپراکس��اید نیز تولید 
می​ش��ود]10و11[. دی​اکسیژنازها یا اکس��یژن ترانسفرازها دستۀ دیگری 
از اکس��یژنازها هستند که هر دو اتم اکس��یژن مولکولی را به یک ترکیب 
آل��ی اضاف��ه و ترکیب��ات هیدروکسی​پراکس��ید تولید می​کنن��د. علاوه​بر 
میتوکندری برخی اندامک​های تنفس��ی مانند پراکسیزوم​ها نیز به​واسطۀ 
دارا​بودن آنزیم گزانتین اکس��یداز )XOD( موجود در غشاء و ماتریکس، 
آنیون سوپراکس��اید و پراکس��ید​هیدروژن تولید می​کنن��د. این آنزیم یک 
 DAN+ دهیدروژناز می​باش��د و هیدروژن را از گزانتین و هیپوگزانتین به

منتقل و NADH تولید می​کند]12و 13[.

 منبع اندوژن دیگر ROS، کمپلکس آنزیمی موجود در غشاء سلول​های

تصوی�رA  :1( تولیدROS  در کمپلکس ش�مارۀ I  وIII زنجیرۀ انتق�ال الکترون و مکانیزم​
 ،mtNOS ;اندوتلیال�ی نیتری�ک اکسیدس�نتاز   ،eNOS آنتی​اکس�یدانی.  ه�ای دف�اع 
نیتریک​اکس�ید س�نتاز میتوکندریای�ی; GPX، گلوتاتی�ون پراکس�یداز; OMM، غش�ا 
 خارج�ی میتوکن�دری; IMS،فض�ای بین دو غش�اء; IMM، غش�اء داخل�ی میتوکندری

(Tang X et al, Frontiers in physiology 2014)
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فاگوس��یت​کننده )نوتروفیل​ها و ماکروفاژها( می​باش��د. طی فرآیند انفجار 
 تنفس��ی، مصرف اکسیژن در سیس��تم فاگوس��یت​کننده افزایش می​یابد

فعالی��ت آنزی��م NADPH اکس��یداز اکس��یژن مولکول��ی را ب��ه آنیون 
سوپراکساید تبدیل می​کند و باعث آسیب به سلول بیگانه می​گردد]14[. 
آنیون سوپراکس��اید توسط سوپراکساید دیس��موتاز به پراکسید​هیدروژن 
تبدی��ل می​ش��ود ک��ه در حض��ور میلوپراکس��یداز )MPO( موجود در 
فاگ��وزوم و یون کلر و تیروزین، ترکیباتی چون گاز کلر و یون هیپوکلریت 
)HCLO( و رادی��کال تیزوزی��ن تولید می​گردد که یک��ی از عوامل مهم 
دیگر در آس��یب به ارگانیزم مهاجم می​باشد. در حضور یون​های فلزی، از 
آنیون سوپراکساید و پراکسید هیدروژن رادیکال هیدروکسیل تشکیل می​
شود که یک عامل مهم دیگر در آسیب به ارگانیسم بیگانه می​باشد. آنیون 
 سوپراکساید تولید​شده توس��ط آنزیم NADPH  اکسیداز در pH های
 پایین وزیکول​های آندوسیتوزی، پروتونه​شده و رادیکال هیدروکسیل فعال​تر

را ایجاد می​کند. آنیون سوپراکس��اید به نقاط دیگر منتش��ر می​ش��ود و با 
نیتریک​اکساید تولید​شده توس��ط ماکروفاژها واکنش می​دهد و گونه​های 
 )1-b واكنش​پذيرتر دیگری مانند پراكسی​نيتريت را تولید می​کند)تصویر

 .]15-17[

نيتر​كياكسي��د )NO(، رادكيال بسي��ار واكنش​پذير دیگری می​باش��د 
كه به​عنوان كي سي��گنال بيولوژكي مهم در طيف وسي��عي از فرآيند​های 
فيزيولوژكي ش��امل اتس��اع ماهيچۀ صاف عروق، انتق��ال نوروني، تنظيم 
 4)NOS( ايمنی و ترشح انسولین نقش دارد. آنزيم نيتركي اكسيد سنتتاز
در كي واكنش اكسي��داتيو، مس��ئول توليد NO از اسیدامینۀ آرژنین می​

باش��د. اين آنزيم در س��لول​های مختلف حضور دارد ولی در ماكروفاژها و 
نوتروفيل​ها فعال​تر می​باشد]18و19[.

4. Nitric Oxide Synthases

2 L-arginine + 3 NADPH + 1 H+ + 4 O2 →2 
citrulline +2 nitric oxide + 4 H2O + 3 NADP+

حضور فلزات فعال از قبیل کاتیون​های آهن دو - سه ظرفیتی و مس نیز 
در تولید ROS اهمیت به​س��زایی دارد. طی واکنش فنتون و هابر- ویس، 
تحت تأثیر پراکس��ید​هیدروژن، یون​های آه��ن احیاء می​گردند و رادیکال 

هیدروکسیل فعال تولید می​شود]20[.

عوامل خارجی نیز در تولید ROS دخالت دارند. اش��عه​های یونیزاسیون 
ب��ا تأثی��ر بر مولک��ول آب ترکیبات فعال��ی مانند رادیکال هیدروکس��یل، 
پراکس��ید​هیدروژن و آنیون سوپراکس��اید تولید می​کنند. برخی​از عوامل 
محیط��ی مانند برخی داروها، الکل، س��موم ش��یمیایی، س��یگار و برخی 
مشتقات اکس��یژن مثل هیپرباریک اکسیژن از س��ایر عوامل تولید​کنندۀ 

ROS هستند]21 و22[.

تولید رادیکال​های آزاد در سلول​های سرطانی

ش��واهد متعدد حاکی از آن است که س��لول​های سرطانی در مقایسه با 
س��لول​های نرمال ROS بیش��تری تولید می​کنند و در معرض اس��ترس 
اکس��یداتیو ق��رار دارن��د]23[. از​جملۀ این ش��واهد می​توان ب��ه افزایش 
محص��ولات حاص��ل​از واکنش​های با واس��طۀ ROS و ردیاب��ی آن​ها در 
خون و ادرار و افزایش بیان آنزیم​های آنتی​اکس��یدان در پاسخ به استرس 
 ROS اکس��یداتیو اشاره نمود]24[. در سلول​های سرطانی افزایش میزان
نتیجۀ افزای��ش فعالیت متابولی��ک، نقص عملکرد میتوکن��دری، فعالیت 
پراکس��یزوم​ها، افزایش س��یگنالینگ​های با واس��طۀ رس��پتور، فعال​شدن 
انکوژن​ها، افزایش فعالیت اکس��یدازها، سیکلواکسیژنازها، لیپواکسیژنازها 

و تیمیدین فسفریلاز می​باشد]25[.

بیان ژن​های مرتبط با ترانسفورماس��یون از قبی��ل Ras، Bcr-Abl و 
C-Myc تولی��د ROS را القاء می​کند. ROS برای عملکرد توموریژنیک 
 K-Ras برخی از این انکوژن​ها ضروری می​باشد]23[. جهش​های انکوژنیک
 ROS میزان c-AMP و افزایش A با تأثیر بر فعالیت مسیر پروتئین​کیناز
سلولی را افزایش می​دهد و پرولیفراسیون سلولی را تحریک می​کند]22[. 
افزای��ش بیان انک��وژن C-Myc نیز باعث القاء آس��یب به DNA، فعال 
شدن p53 و افزایش س��طح ROS می​گردد]25[. موتاسیون در ژن​های 

B( عمل آنزیم  NADPH oxidase یا Nox درایجاد گونه​های فعال اکس�یژن جهت از بین 
بردن پاتوژن )توضیح در متن( این آنزیم به​صورت کمپلکس آنزیمی می​باشد و از زیرواحدهای 
س�یتوزولی (p47phox، p67phox ،p40phox ،rac1/2) و ترانس�ممبران )p22phox  و  

 (Assari T, Medical immunology 2006) .تشکیل شده است  )gp91phox
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DNA میتوکن��دری )mtDNA( منجر​به نقص زنجی��ر انتقال الکترون، 
 نش��ت الکترونی و نهایتاً تولید آنیون سوپراکس��اید می​ش��ود که می​تواند

به انواع ROS تبدیل شود]26[.

پروتئین p53 به​عنوان نگهبان ژنوم می​باش��د ازدست​رفتن عملکرد آن 
 P53 .]27[در 50 درصد از س��رطان​های پیشرفتۀ انس��انی دیده می​شود
به​عن��وان ی��ک فاکتور نس��خه​برداری در تنظیم بیان بس��یاری از ژن​های 
پرواکسیدان و آنتی​اکس��یدان نقش دارد و نقص عملکرد آن به​هم​خوردن 
هموستاز ردوکس، ایجاد استرس اکسیداتیو و نهایتاً موتاژنز و رشد تومور را 
در​پی دارد. بدین جهت به​نظر می​رس��د ژن مربوط​به آنتی​اکسیدان​هایی از 
قبیل سوپراکساید، کاتالاز و گلوتاتیون پراکسیداز به​عنوان تومورساپرسور 
عمل می​کند و نقص عملکرد آن​ها منجر به افزایش ROS در س��لول​های 

سرطانی می​شود]23و28[.

مسیر پیام​رسانی PI3K/Akt نقش مهمی در سرطان​های انسانی دارد 
و بس��یاری از اجزای این مس��یر در تومورهای انس��انی جهش پیدا کرده 
است. Akt یا پروتئین​کیناز PKB( B(5 در اغلب سرطان​ها دچار افزایش 
 فعالیت می​گردد و منجر به افزایش بقاء سلول​های توموری و مقاومت آن​ها

به ش��یمی​درمانی می​ش��ود. به​نظر می​رس��د Akt فرآیند تولید ROS را 
از چن��د طریق القاء می​کند اول اینکه از طریق مس��یرهای س��یگنالینگ 
ERK1/2 و Rac به​عنوان مح��رک گلیکولیز عمل می​کند و همزمان با 
افزایش مصرف اکس��یژن، متابولیسم اکسیداتیو را در میتوکندری افزایش 
 می​دهد و در​واقع به​طور غیرمستقیم ROS داخل سلولی را افزایش می​دهد.
دوم اینکه Akt1,2 خود به​طور مس��تقیم بسیاری از آنزیم​های متابولیک 
را تنظی��م می​کن��د. س��وم اینکه، Akt با فسفریلاس��یون فاکتور نس��خه​
برداری FOXO6 باعث مهار آن و تجمع ROS می​ش��ود. فاکتور نس��خه​
برداری FOXO3a در نس��خه-برداری آنزیم​های آنتی​اکسیداتیو از قبیل 
mnSOD و کات��الاز و ترکیب آنتی​اکس��یدان سس��ترین-3 نقش مهمی 

دارد]29[.

در س��لول​های س��رطانی اثرات س��وء بیولوژیک��ی فاکتورهای رش��د و 
 س��ایتوکاین​ها از​طری��ق افزای��ش ROS اعمال می​ش��ود. ب��رای مثال در

 ،)INF-α( و آلفا )INF-δ( سلول​های توموری، در پاسخ به اینترفرون گاما
پراکسید​هیدروژن و نیتریک​اکساید افزایش می​یابد. فاکتور رشد مشتق از 
پلاکت )PDGF(، فاکتور رش��د اپیدرمی )EGF(، انسولین، فاکتور رشد 
توموری بت��ا )TGF-β(، اینترلوکی��ن-1 )IL-1(، فاکت��ور نکروز​دهندۀ 
تومور آلفا )TNF-α(، آنژیوتانس��ین و اسید​لیزوفس��فاتیدیک نیزتشکیل 
سوپراکس��اید را الق��اء می​کنند. فعال ش��دن K-ras Rho GTPase یا 
 موتاسيون انکوژنیک آن نیز با افزایش تولید سوپراکساید و بروز سرطان​های
مختلف مرتبط می​باشد. به​نظر می​رسد فاکتورهای رشد و  K-ras جهش​

5. Protein kinase B
6. Forkhead box protein O

یافته با فعال کردن NADPH اکسیداز میتوکندری، سطح سوپراکساید 
داخل سلولی را افزایش می​دهند]30-34[.

 تحریکات مزمن، عفونت و التهاب عامل بروز بسیاری از سرطان​ها می​باشد.
التهاب مرحلۀ مهم پیش��رفت تومور می​باشد. ماکروفاژها با تحریک ترشح 
محرک​های مختلفی از قبیل اینترفرون آلفا، تولید ROS در س��لول​های 
توم��وری را القا می​کنند. تولید ROS توس��ط نوتروفیل​ه��ا و ماکروفاژها 
مکانیس��می برای کشتن س��لول​های توموری می​باش��د. در این سلول​ها، 
فعالیت سیس��تم NADPH اکس��یداز منجر به تش��کیل سوپراکساید و 
آسیب به سلول بیگانه می​شود. ماکروفاژهای فعال​شده نیتریک​اکساید نیز 
تولید می​کنند که با سوپراکساید واکنش می​دهند و رادیکال​های پراکسی​
نیتریت تولید می​کنند که مشابه رادیکال​های هیدروکسیل عمل می​کنند 

و در آپوپتوز سلول​های توموری مشارکت می​کنند]25[.

اثرات افزایش ROS بر بیومولکول​ها

تعادل بین تولید و حذف ROS در س��لول​ها به​وسیلۀ مکانیزم​های آنتی​
 اکسیدانی متعددی حفظ می​شود. نقص عملکرد هرکدام از این مکانیزم​ها

وضعیت اکسیداس��یون-احیاء سلولی را به نفع اس��ترس اکسیداتیو تغییر 
می​دهند]35[. س��لول​ها به​وسیلۀ آنزیم​ها )سوپراکساید​دیسموتاز، کاتالاز، 
گلوتاتیون​پراکس��یداز، گلوتاتی��ون ردوکتاز و گلوتاتیون S- ترانس��فراز( و 
مولکول​های آنتی​اکسیدان داخل سلولی)گلوتاتیون، سلنیوم، ویتامین​های

E، C وA( از آس��یب اکس��یداتیو در​امان می​مانند ولی گاهی محرک​های 
خارجی و تغییرات متابولیکی داخل س��لول منج��ر به افزایش ROS و یا 
کاهش ظرفیت آنتی​اکسیدانی و به​هم خوردن هموستاز ردوکس می-شود 
که نتیجۀ آن مواجهه با مقدار زیادی ROS است که قابل دتوکسیفه​شدن 
توس��ط عوامل آنتی​اکس��یدان داخل سلولی نیس��ت]36[. در این شرایط 
ROS/RNS به​طور برگشت​ناپذیر وارد ساختار ماکرومولکول​ها می​شوند و 
 عملکردهای سلول را تغییر می​دهند. در حالت کلی اثرات مضر رادیکال​های
 آزاد بر​روی سلول​ها شامل آسیب DNA، اکسیداسیون لیپیدها و پروتئین​ها

می​باشد]37[.

لیپیدها ساختار اصلی غشاء پلاسمایی سلول​ها را تشکیل می​دهند و در 
معرض اس��ترس اکسیداتیو قرار دارند. اس��یدهای چرب غیراشباع با چند 
پیوند دوگانه )PUFAs(7 نس��بت به تغییرات اس��ترس اکسیداتیو بسیار 
حساس هستند و پراکسیداسیون آن​ها منجر به تشکیل آلدهیدهای فعال 
از قبیل مالون​دی​آلدهید)MDA( و 4-هیدروکسی​2-نوننال)HNE( می​
ش��ود. مالون​دی​آلدهید با بازهای DNA واکن��ش می​دهد و جهش ژنی 
ایج��اد می​کند ولی HNE اغلب با پروتئین​ها واکنش می​دهد و منجر به 
تغییرات عملکردی مهم پروتئین​های پیام​رسان از قبیل JNK و کاسپازها 

می​شود]38 و39[.

7. Polyunsaturated fatty acids
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اگر​چه همۀ رزیدوهای اس��یدهای آمینه پروتئین​ها می​توانند به​وس��یلۀ 
ROS/RNS اکسید شوند، ولی ریشه​های جانبی برخی از آن​ها مستعدتر 
می​باش��ند؛ لیزین، آرژنین، هیستیدین، پرولین و ترئونین به اکسیداسیون 
با واس��طۀ فلز بس��یار حس��اس هس��تند]40و 41[. نتیجۀ اکسیداسیون 
زنجیرهای جانبی پروتئین​ها مش��تقات کربونیل اس��ت که به​س��هولت در 
مایعات بدن قابل ردیابی می​باشند و سطح پروتئین کربونیل به​عنوان مارکر 
کمی اکسیداس��یون پروتئین​ها مورد استفاده قرار می​گیرد]42[. رادیکال​
ه��ای مهمی ک��ه پروتئین​ها را مورد حمله قرار می​دهند ش��امل رادیکال​
های هیدروکس��یل و پراکسی​نیتریت می​باش��ند. رادیکال پراکسی​نیتریت 
باعث نیتروزیلاسیون برگش��ت​ناپذیر اسید​آمینه​های سیستئین، متیونین، 
تریپتوفان و از​دس��ت​رفتن عملکرد پروتئین می​شود]43[. نیتروزیلاسیون 
ریشه​های تیروزین برخی پروتئین​ها فرآیند فسفریلاسیون یا استیلاسیون 

آن​ها را مختل می​کند و منجر به سوء عملکرد پروتئین می​شود]44[.

DNA ای هس��ته​ای در مقایس��ه ب��ا لیپیده��ا و پروتئین​ها نس��بت به 
تغییرات اکسیداتیو مقاوم​تر می​باشد دلیل این امر ساختار دوبل هلیکس، 
غلاف حفاظتی هیس��تون و حضور س��ایر پروتئین​ها می​باش��د. ولی تحت 
ش��رایط اکسیداتیو بالا ROS روی پورین​ها، پیریمیدین​ها و پروتئین​های 
کروماتی��ن تأثیر می​گذارد و باعث تغییر ب��از، تغییر DNA و جهش ژنی 
می​ش��ود. رادیکال هیدروکس��یل با باز گوانین DNA واکنش می​دهد و 
8- هیدروکسی​دزوکسی​آدنوزین تولید می​کند که در​نهایت منجر​به تغییر 
جفت GC به TA و جهش نقطه​ای می​ش��ود. این تغییر قوی​ترین شاهد 
در تأیید نقش اس��ترس اکس��یداتیو در فرآیند کارس��ینوژنز می​باشد. 8- 
هیدروکسی​دزوکسی​گوانوزین)OHdG-8( حاصل از اکسایش DNA به​

عنوان مارکر استرس اکسیداتیو مورد استفاده قرار می​گیرد]47- 45[.

مکانیسم عمل ROS در تنظیم فرآیندهای سلولی

1.تغییرات اکس��یداتیو مس��تقیم: رادیکال​های هیدروکس��یل و نیتریک​
اکس��اید منجر​به تغییر مس��تقیم پروتئین​ها می​ش��وند این تغییرات جزء 
تغییرات پس از ترجمۀ پروتئین​ها محسوب می​شود. اسید​آمینه​های مختلف 
حساسیت​های متفاوتی به تغییرات اکسیداتیو دارند اسید​آمینه​های حاوی 
سولفور )متیونین و سیستئین( بیشتر از بقیه هدف اکسیداسیون مستقیم 
می​باشند. اکسیداسیون ملایم سیستئین باعث گلوتاتیونیلاسیون برگشت​

پذیر آن می​ش��ود]48[. اینگونه تغییرات اکس��یداتیو ملای��م در عملکرد 
 IKB ، RAS، تیوردوکسین ردوکتاز ،p53 بسیاری از پروتئین​ها همانند
Akt8 و پروتئین تیروزین​فسفاتازها نقش مهمی دارد]49[. اکسیداسیون 

برگشت​پذیر کالمودولین برای عملکرد آن به​عنوان پروتئین تنظیم​کنندۀ 
کلس��یم ضروری می​باشد]50[. استرس اکس��یداتیو شدید، اثرات مخرب​
ت��ری به​جا می​گذارد، روند تش��کیل اسید​س��ولفینیک، اسید​س��ولفونیک 
 و کربونیلاس��یون پروتئین​ه��ا را تس��ریع می​کند. عملک��رد پروتئین​هایی

8. nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor

از قبیل HSP, ANT9 و Bcl2 به​وسیلۀ کربونیلاسیون مختل می​گردد و 
 تیروزین​نیتراسیون p38MAPK,  JNK10  و PKC مانع فعالیت آن​ها

می​شود]51[.

2.تنظیم رونویس��ی: تع��دادی از فاکتورهای رونویس��ی در محل  اتصال 
ب��ه DNA، دارای ریش��ه​های سیس��تئین حس��اس ب��ه اکسیداس��یون 
ه��ای پروتئین​ تی��ول  ریشۀ��  اکسیداس��یون  باش��ند]52[.  می​  احی��اء 
DNA مان��ع اتص��ال آن​ها به  p53 و HIF-111 ,AP-112, NF-KB 

می​شود]53[. آنزیم هیستون​داستیلاز)HDAC( و برخی کواکتیواتورهای 
نسخه​برداری از قبیل CBP/p300 که فعالیت هیستون استیلازی دارند از​

جملۀ دیگر پروتئین​های مهم حساس به ردوکس هستند]54[.

3.تنظیم وابسته به برهمکنش پروتئین​های حساس به ردوکس: بسیاری 
از پروتئین​ه��ا از طریق برهمکنش با س��ایر پروتئین​ها پایدار می​ش��وند و 
اغلب تنظیم​کنندۀ منفی یکدیگر می​باش��ند. استرس اکسیداتیو با تأثیر بر 
پارتنرها، باعث جدا​ش��دن آن​ها از کمپلکس پروتئینی و فعال شدن آن​ها 
 ASK-TRX ، JNK-GST،می​ش��ود. از این زوج پروتئین​ها می​توان به

JNK-p53  و Nrf2-Keap113  اشاره نمود]55[.

4.تنظی��م آنزیم​ه��ای مودیفه​کنن��ده: وضعی��ت فسفریلاس��یون برخی 
پروتئین​ه��ا عامل مهم��ی در تنظیم فعالیت آن​ه��ا و در​نتیجه تعادل بین 
فعالیت کینازها و فس��فاتازها می​باشد. اکسیداس��یون عامل تیول گیرندۀ 
تیروزین​کینازها )RTKs( منجر به فعال ش��دن آن​ها می​شود در​حالی​که 
اکسیداسیون پروتئین تیروزین​فسفاتازها)PTPase( عملکرد آن​ها را مهار 
می​کند]56[. علاوه​بر PTPaseها، لیپیدها فسفاتاز PTEN14 و فسفاتاز 
با وزن مولکولی پایین cdc25 نیز با روش مشابهی تنظیم می​شوند]57[.

5.تنظیم ترن​اور پروتئین: میزان ترن​اور یک پروتئین می​تواند تحت​تأثیر 
ش��رایط اکسیداسیون احیاء سلولی باشد. بس��یاری از پروتئین​ها به​وسیلۀ 
سیستم یوبیکوئیتین- پروتئازوم تجزیه می​شوند در​حالیکه برخی پروتئین​
ها، سوبسترای کاسپازها می-باشند]58[. تحت تأثیر شرایط اکسیداسیون 
احیاء خاصی، پروتئین​هایی از قبیل Bcl2 و p53 فس��فریله می​ش��وند و 
اتصال آن​ه��ا به E3- یوبیکوئیتین​لیگاز اختصاصی ش��ان افزایش می​یابد 

این عمل باعث تسریع تجزیۀ پروتئین به​وسیلۀ پروتئازوم می​شود]59[.

تأثیر ROS بر مسیرهای پیام​رسان دخیل در فرآیندهای سلولی

اخیراً نقش ROS در فرآیندهای پیام​رس��انی سلولی مورد توجه فراوان 
قرار گرفته اس��ت]60[. تأثیرROS بر مسیرهای پیام​رسانی به​دلیل تأثیر 

9. Adenine nucleotide translocator
10. c-Jun N-terminal kinases
11. Hypoxia-inducible factor 1-alpha
12. Activator protein 1
13. nuclear factor E2-related factor 2
14. Phosphatase and tensin homolog
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متفاوت بر انواع فاکتورهای نس��خه​برداری به​ص��ورت تغییرات مثبت و یا 
منفی می​باشد. در حالت کلی ROS  حتی در سلول​های نرمال بسیاری از 
مس��یرهای پیام​رسانی دخیل در تقسیم سلولی و تمایز را تحت تأثیر قرار 
 ،DNAمی​دهد]61[. مخصوصاً آنیون سوپراکس��اید و نیتریک​اکس��اید با
پروتئینها و لیپیدها واکنش می​دهد و س��اختار آن​ها را تغییر می​دهند که 
در نهایت منجر به فعال شدن و یا غیرفعال شدن برخی ژن​ها می​شود این 
تغییرات می​تواند بخشی از فرآیند سازگاری یا پاسخ هموستاتیک باشد اما 
اغلب عملکردهای بافت و سلول را تحت تأثیر قرارمی​دهد و منجر به سوء 

عملکرد سلولی، ترانسفورماسیون و یا مرگ سلولی می​شود]62[.

گونه​ه��ای فعال اکس��یژن و بخص��وص پراکس��یدهیدروژن در چندین 
آبشار انتقال پیام س��لول​های سرطانی از قبیل رشد​و​نمو سلولی، آنژیوژنز، 
متاس��تاز، متابولیس��م گلوکز، تمایز و التهاب دخالت دارد و به​عنوان یک 
عامل انکوژنیک، در ش��روع، توسعه، پیش��رفت، تهاجم و متاستاز سرطان 
نقش مهمی دارند]63[. پراکس��ید هیدروژن باعث اکسیداس��یون برگشت​
پذی��ر پروتئین​های هدف��ی مانند تیروزین-فس��فاتازها، پروتئین تیروزین​
کینازها، رس��پتور تیروزین​کینازها و برخی فاکتورهای رونویسی می​شود. 
علاوه​بر​این برخی از فاکتورهای نس��خه​برداری دخیل در رونویس��ی ژن​ها 
نیز نس��بت​به تغییرات اس��ترس اکسیداتیو حس��اس می​باشند، عمدۀ این 
فاکتورها شامل 1α- HIF و NF-κB ، Nrf2، AP-1 می​باشند که در 

بقاء و مرگ سلولی نقش مهمی را ایفا می​کنند.

تنظیم اکس��یداتیو مس��یر NF-κB: مس��یر NF-κB در تنظیم بیان 
ژن‌های دخیل در تکثیر و بقاء س��لولی و مقاومت به آپوپتوز  نقش مهمی 
دارد و در بس��یاری از سرطان​های انس��انی فعالیت غیرعادی و دائمی آن 
دیده می​ش��ود. القاء​کننده‌های فعالیت NF-κB  متنوع هس��تند و عمدتاً 
 )TNF-α( ،شامل گونه‌های فعال اکسیژن، فاکتور نکروز​دهندۀ تومور آلفا
اینترلوکین۱-بتا و اشعه​های یونیزان می‌باشد. NF-κB یک فاکتور نسخه​
برداری حساس به شرایط اکسیداسیون احیاء سلولی می​باشد اکسیداسیون 
مس��تقیم سیستئین شماره 62 این فاکتور، مانع اتصال آن به DNA می​
شود در​حالی​که احیاء آن توسط تیوردوکسین باعث اتصال آن به DNA و 
 -S شروع فرآیند نسخه​برداری ژن​های هدف می​شود. گلوتاتیونیلاسیون و
نیتروزیلاسیون از دیگر تغییرات اکسیداتیو NF-κB می​باشد]23[. علاوه 
بر تغییرات س��اختاری NF-κB، تغییرات غیرمس��تقیم نیز فعالیت آن​را 
تحت تأثیر قرار می​دهد. مطالعات مختلف حاکی از نقش کلیدی هیستون 
داستیلازها )HDACs( در انواع سرطان​ها می​باشد]ROS .]64 با تأثیر 
مس��تقیم بر HDACs، در مولکول DNA س��وپرکویل ایجاد می​کند و 
مانع اتصال NF-κB به DNA و فعالیت نس��خه​برداری ژن​های مربوطه 
می​ش��ود. اعضاء خانوادۀ NF-κB به​وس��یلۀ IκB )مهارکنندۀ کاپابتا( در 
 IκB با فعال​کردن ROS س��یتوزول غیرفعال می​شوند. س��ایتوکاین​ها و
 NF-κB را فسفریله می​کنند و باعث انفصال آن از IκB ،)IKK( کینازها
می​ش��وند. NF-κB آزاد به هسته می​رود و نسخه​برداری ژن​های هدف را 

فعال می​کند. این ژن​ها شامل اعضاء خانوادۀ پروتئین​های آنتی​آپوپتوتیک 
Bcl2، همولوگ غیرفعال کاس��پازها )FLIP(15، مهارکننده​های کاس��پاز 
،(TRAF1) TNF-α فاکت��ور مرتب��ط ب��ا رس��پتور ،IAPs از قبی��ل 
  Gadd45 زنجیر سنگین فریتین و ،mnSOD آنتی​اکسیدان​هایی از قبیل
می​باش��د که مرگ سلولی با واسطۀ JNK را مهار می​کنند. IκB فسفریله 
به​وس��یلۀ سیس��تم یوبی​کوئیتین–پروتئازوم تجزیه می​ش��ود با توجه به 
حساس بودن سیس��تم یوبی کوئیتین-پروتئازوم به شرایط اکسیداسیون 
احیاء سلولی و تأثیر آن بر پایداری IκB، فعالیت NF-κB نیز تحت تأثیر 

قرار می​گیرد)تصویر2( ]23[.

نقش ROS در تنظیم مس��یر MAPK: مسیر پروتئین​کینازهای فعال​
شونده با میتوژن )MAPK(16 در رشد و تقسیم سلولی، پاسخ به استرس، 
آپوپتوز وکنترل بیان ژن نقش مهمی را ایفا می​کند. مکانیسم عمل  خانوادۀ 
MAPK  به​صورت آبش��اری می​باش��د بدین​صورت​ک��ه تحریک گیرندۀ 
Ras فاکتور رش��د )گیرنده تیزوزی��ن کیناز( باعث فعال ش��دن پروتئین 
MAPK و  MAPKKK، MAPKK می​شود و س��پس پروتئین​های 
 MAPK به​طور آبشاری و با فرآیند فسفریلاسیون فعال می​شوند. خانوادۀ
  (ERK1/2)17، JNK18 از کیناز تنظیم​ش��ونده با سیگنال خارج سلولی

15. FLICE-inhibitory protein
16. Mitogen-activated protein kinases
17. Extracellular signal–regulated kinase
18. c-Jun N-terminal kinases

 )B(و نقش آن در بقاء س�لولی (A) NF-κB تصوی�ر2: تأثیر اکسیداس�یون ب�ر عملک�رد
)Trachootham D, 2008( Antioxid Redox Signal )توضیح در متن(
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ERK3/4 ،p38 و ERK5/BMK  تشکیل​شده​است. JNK و p38 بعضاً 

باهم در یک گروه تحت عنوان پروتئین​کیناز​های فعال​ش��ونده با استرس 
)SAPKs(19 قرار می​گیرند که در پاس��خ سلول به انواع استرس​ها مانند 
سیتوکین​ها، شوک اسمزی و آسیب مکانیکی نقش مهمی دارند]65و66[. 
 ش��واهد متعدد نش��ان می​دهد استرس اکسیداتیو، مس��یر ERK را فعال

می​کند به​طوری​که در پاسخ به استرس اکسیداتیو ملایم، باعث تسریع رشد 
سلولی می​شود در​حالی​که در ش��رایط آسیب اکسیداتیو، SAPKs باعث 
القا آپوپتوز از مس��یر داخلی و خارجی و همچنین نکروز می​شوند. در​مورد 
نحوۀ تأثیرROS  بر ERK1/2 و القاء پرولیفراسیون سلولی نیز شواهدی 
،ERK1/2 به​عنوان فعال​کنندۀ Ras در دس��ت است که نش��ان می​دهد 
به​طور مستقیم در محل  سیستئین 118 اکسید می​شود و قابلیت تبدیل 
GDP/GTP آن مهار می​ش��ود )تصویر3(. ش��واهد دیگر نش��ان می​دهد 
اس��ترس اکسیداتیو با تأثیر مس��تقیم بر Ras باعث S- نیتروزیلاسیون و 
گلوتاتیوناس��یون و فعال شدن آن می​ش��ود علاوه​بر​این P90RSK به​عنوان 
کیناز بالادس��ت ERK1/2، مستقیماً به​وسیلۀ ROS فعال می​شود]70-
KROS .]67 در طی پیش��رفت سرطان تخمدان باعث تجزیۀ ناظم منفی 
ERK1/2 - فس��فاتاز ش��مارۀMAPK 3 (MKP3) - می​شود که در 
این حالت منجر به فعالیت بی​رویۀ ERK1/2 و تومورژنیسیتۀ سلول​های 

سرطان تخمدان می​شود]71[.

 تنظیم اکسیداتیو مسیر PI3K/Akt: گیرنده​های تیروزین​کیناز شبکه​ای
 از پاس��خ​های پیام​رس��انی را ایج��اد می​کنن��د ک��ه یکی از آن​ها مس��یر

19. stress-activated protein kinases

PI3K/Akt می​باشد. انتقال سیگنال از طریق مسیر PI3K/Akt نقش 
بس��یار مهمی در تنظیم رشد سلولی، پرولیفراسیون، بقاء و تحرک سلولی 
دارد]72[. تأثیر Akt بر رش��د و بقاء س��لولی از طریق فسفریلاس��یون و 
 Bad، غیرفعال​ش��دن سوبس��تراهایی از قبیل پروتئین​های پروآپوپتوتیک
Bax، Bim و فاکتور نسخه​برداری FOXO3a اعمال می​گردد]73[. به​
طور​کلی فعالیت این مسیر به​وسیلۀ تغییرات اکسیداتیو​فسفاتازهای وابسته 
به سیس��تئین )CDPs( و پروتئین​کینازها تنظیم می​ش��ود. فسفاتازهای 
وابس��ته به سیس��تئین، خانوادۀ بزرگی از آنزیم​ها را تشکیل می​دهند که 
در محل کاتالیتیک خود دارای ریشۀ�� سیس��تئین بس��یار فعال می​باشند 
 CDP .که تغییرات اکس��یداتیو این ریش��ه، فعالیت آنزیم را مهار می​کند
هایی که مسیر سیگنالینگ PI3K/Akt را تنظیم می​کنند، شامل لیپید​

فس��فاتاز، PIP3 فسفاتاز، فس��فاتاز PTEN و پروتئین تیروزین​ فسفاتاز 
)PTPase(20 می​باشند]74[.

 PI3K و PDK-121، mTOR22 به​وس��یلۀ کینازه��ای Akt فعالیت
نیز کنترل می​گردد. PDK-1 و mTOR با فعال کردن فسفریلاس��یون 
Akt در مح��ل سیس��تئین 473 و تیروزی��ن 308 باع��ث فع��ال ش��دن 
 )PIP3( 3و4و5 فسفاتیدیل اینوزیتول​تری​فسفات ،PI3K .]75[می​شوند
 PTEN تولید می​کند که به​عنوان لنگر غشایی عمل می​کند. در​حالی​که
 به​عنوان  فسفاتاز وابسته به سیستئین، تنظیم​کنندۀ منفی PIP3 می​باشد

  PTEN را مهار می​کند. بنابراین غیرفعال​شدن اکسیداتیو Akt و فعالیت
به​وسیله پراکسیدهیدروژن و سوپراکساید، باعث غیرفعال​شدن اکسیداتیو 
مس��یر PI3K/Akt می​ش��ود در​صورتی​که احیاء PTEN اکسید​شده به​
وس��یلۀ سیستم تیوردوکس��ین/ NADPH، مسیر PI3K/Akt را فعال 
می​کن��د. ل��ذا، نقص تنف��س میتوکندریایی و متعاق��ب آن کاهش میزان 
NADPH،  باعث فعال شدن اکسیداتیو PTEN و فعال​شدن این مسیر 
می​ش��ود. غیرفعال ش��دن تنظیم​کننده​های منفی گیرن��دۀ تیروزین​کیناز 
PI3K/ ها - منجربه فعال​ش��دن مداوم مس��یر پیام​رس��انیPTPase  -

Akt می​ش��ود. شرایط اکس��یداتیو منجر به تشکیل پل​دی​سولفیدی بین 
 سیس��تئین 297 و 311 در دمی��ن کین��ازی Akt و غیرفعال​ش��دن آن

می​شود. )تصویر4( ]76-80[.

تأثیر استرس اکسیداتیو بر مرگ سلولی و آپوپتوز

اس��ترس اکسیداتیو با تأثیر بر مسیر داخلی و خارجی آپوپتوز در تنظیم 
آن نق��ش مهم��ی ایفا می​کند. افزای��ش ROS با تأثیر بر س��یتوکرومc و 
فعال​شدن کاسپازها منجر به مرگ سلولی می​شود]81[. متعاقب پیام​های 
آپوپتوتیک، رهایش H2O2 منجربه فعال​شدن JNKs و در​نهایت کاهش 
 بیان پروتئین​ه��ای آنتی​آپوپتوتیک Bcl-2 و Blc-XL می​ش��ود]82[. 

20. Protein tyrosine phosphatases
21. 3-Phosphoinositide-dependent protein kinase-1
22. mechanistic target of rapamycin

تصویر3: تنظیم ردوکس مسیر سیگنالینگ ROS :MAPK  با تأثیر بر Ras ،ASK1  و فسفاتاز 
ش�مارۀMAPK  3 (MKP3)  سیگنال​های بقاء و مرگ س�لولی  را تحت​تأثیر قرار می​دهد. 
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زهــرا محمـدی آبـگـرمــی و همـکـاران            37

JNKs حت��ی الگوی کمپلکس Bax-Bcl2 را با افزایش بیان Bax تغییر 
می​دهد در این ش��رایط هومودیمر Bax تش��کیل می​ش��ود و باعث به​هم 
  ASK1 ریخت��ن یکپارچگی غش��اء میتوکندری می​ش��ود]83[. پروتئین
مهم​ترین سنس��ور ردوکس آبشار SAPK و یکی از عوامل مهم در کنترل 
فعالیت P38 MAPK و JNK می​باشد]84[. فعالیت این پروتئین توسط 
برهمکنش با تیوردوکس��ین تنظیم می​ش��ود. در ش��رایط طبیعی س��لول 
ASK1 به​صورت کمپلکس غیرفعال تیوردوکس��ین- ASK1 می​باش��د 

ولی در اثر پیام​های آپوپتوتیک و ROS، ریشۀ�� سیستئین​تیوردوکس��ین 
اکس��ید و باعث انفصال آن از ASK1 می​شود. ASK1 به​صورت مولتیمر 
در​می​آید و فعالیت کینازی پیدا می​کند که در​نهایت منجربه فعال​ش��دن 
JNK و P38 و شروع فرایند آپوپتوز می​گردد]85[. فعال شدن اکسیداتیو 
 Bcl- 2، منج��ر به فسفریلاس��یون پروتئین​ه��ای آنتی​آپوپتوتیک JNK
Bcl-vl و Mcl-1  و مه��ار خاصی��ت آنتی​آپوپتوتی��ک آن​ها می​ش��ود 
درحالی​که فسفریلاس��یون Bmf، Bim و Bad به​وسیلۀ JNK در​نهایت 
موجب تس��ریع فعال​شدن Bax/Bak و آپوپتوز با واسطۀ میتوکندری می​

 ،p53 فعال​شده موجب جداشدن آن از JNK ش��ود]86و87[. علاوه​بر​این
پای��داری p53  و درنهای��ت ورود Bax ب��ه میتوکندری و ش��روع فرآیند 
 SAPK آپوپتوز می​گردد]84[. مطالعات اخیر نشان می​دهد که مسیرهای
می​توانند آپوپتوز را از طریق مس��یر وابسته به گیرنده نیز القاء کنند]88[. 
در پاس��خ به استرس اکسیداتیو FOXO3a و p53 نیز از عوامل مهم در 
 )NO( القاء آپوپتوز در سلول​های توموری می​باشند]89[. نیتریک​اکساید
به​دلی��ل فعال​کردن گیرندۀ م��رگ Fas (CD95) و افزایش بیان لیگاند   

تصویر4: تنظیم مس�یر PI3K/Akt  به​وسیلۀ ROS:  فسفریلاسیون پروتئین​های هدف به​
وس�یلۀ Akt  منجر به غیرفعال شدن پروتئین​های پروآپوپتوتیک و فعال شدن فاکتورهای 
نس�خه​برداری دخیل در رونویسی ژن​های مربوط​به پروتئین​های آنتی​آپوپتوتیک می​شود. 
تحت ش�رایط استرس​اکس�یداتیو این مسیر به​وسیلۀ فعال ش�دن  Akt  و غیرفعال شدن 

اکسیداتیو​فسفاتارها )PTEN و PTPase(  القاء می​شود. 

Fas (FasL)، مهار ATP سنتاز میتوکندریایی و مهار برخی آنزیم​های 
آنتی​اکسیدان در القاء آپوپتوز نقش دارد]NO .]90 همچنین با غیرفعال​

کردن س��یتوکروم c اکسیداز و غیرفعال​کردن کمپلکس​های I و II زنجیر 
انتق��ال الکترون، آپوپت��وز را تحت​تأثیر قرار می​دهد]90و91[. کاس��پازها 
عضو خانوادۀ سيستئين​پروتئازها می​باشند كه در جایگاه فعال خود دارای 
ریشۀ سیستئین حساس به اکسیداسیون، نیتروزاسیون و گلوتاتیوناسیون 
می​باش��ند]92و93[. پراکس��ید هیدروژن با تأثیر بر سیتئین جایگاه فعال 
کاس��پاز 3 و 8  باعث غیرفعال​شدن برگشت​پذیر آن می​شود در​صورتی​که 

در​مورد کاسپاز9، موجب فعال شدن آن می​گردد]94و95[.

عملکردهای اختصاصی ROS در سلول​های سرطانی

با​توجه به تأثیرROS بر مس��یرهای پیام​رسانی انتظار می​رود که تمامی 
رفتارهای سلول​های سرطانی از​قبیل رشد و نمو، پیشرفت چرخۀ سلولی، 
آپوپتوز، متابولیس��م انرژی، مورفولوژی سلولی، چسبندگی سلول - سلول 

و تحرک سلولی تحت​تأثیر قرار گیرد]96[. 

تأثیر بر پرولیفراسیون سلولی: ROS با تأثیر بر گیرنده​های فاکتور رشد و 
 مسیرهای پیام​رسانی داخل سلول روند پرولیفراسیون سلولی را تسریع می​کند.
 پروتئی��ن تیروزین​فس��فاتازها )PTPs( ب��ا دفسفریله​ش��دن گیرنده​های
 تیروزین​کیناز باعث غیرفعال​شدن آن می​شوند. مطالعات اخیر نشان می​دهد
ROS با مهار پروتئین تیروزین​فسفاتازها، باعث طولانی​شدن عمل گیرنده​
ه��ای تیروزین کیناز و تکثیر بی​رویۀ س��لول​های توموری می​ش��ود]97[. 
 ERK1/2 پروتئین ناظم منفی (MKP3) MAPK 3 فس��فاتاز شمارۀ
می​باش��د. تجمع ROS در​طی پیش��رفت س��رطان تخمدان باعث تجزیۀ 
 MKP3 و افزایش فعالیت ERK1/2 و در​نهایت توموری شدن سلول​های
س��رطان تخمدان می​ش��ود]98[. علاوه​بر گیرنده​های فاکتور رشد، برخی​

 ROS نیز توسط AP-1 و NF-κB از فاکتورهای نس��خه​برداری از قبیل
فعال می​ش��وند. این فاکتورها چندین ژن دخیل در رش��د و نمو سلولی را 
فعال می​کنند]99[. گونه​های فعال اکس��یژن باعث افزایش بیان سیکلین​

های E1 ،D3 ،B1  و E2 می​ش��وند. این س��یکلین​ها در تس��ریع گذر 
از ف��از G1 ب��ه S نقش مهمی دارن��د]100[. در​صورتی​ک��ه افزایش بیان 
و فعالی��ت آنتی​اکس��یدان​هایی چ��ون سوپراکساید​دیس��موتاز، کاتالاز و 
گلوتاتیون​پراکسیداز، تقسیم سلولی س��لول​های سرطان پانکراس را مهار 

می​کند]101[.

تأثیر بر تحرک سلولی و متاستاز: مهاجرت و تهاجم سلول​های سرطانی 
مهم​ترین مرحله در ایجاد متاس��تاز می​باشد]102[. به​هم خوردن شرایط 
اکسیداس��یون احیاء س��لولی چه از نوع افزایش سطح ROS و چه کاهش 
س��طح آنتی​اکسیدان​هایی از قبیلmn-SOD، مانع چسبندگی سلول به 
ماتریکس خارج س��لولی می​شود و فرآیند مهاجرت س��لولی و متاستاز را 
تسهیل می​کند]103[. اینتگرین​ها، پروتئین​های سطح سلولی هستند که 
در اتصال سلول​ها به ماتریکس خارج سلولی، چسبندگی و مهاجرت سلولی 
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نقش دارند]104[. اینتگرین​ها همچنین به​عنوان گیرنده​های غش��ایی در 
ایجاد پیام​های داخل س��لولی دخیل می​باش��ند آن​ها با تأثیر بر آنزیم​های 
سیکلواکس��یژناز2، 5-لیپواکس��یژناز )LOX-5( و میتوکن��دری می��زان 
ROS س��لول​های س��رطانی را افزایش می​دهن��د]105و106[. در چنین 
شرایطی افزایش ROS، به​طور مستقیم منجر به اکسیدشدن و فعال​شدن 
Src، غیرفعال​ش��دن فس��فاتاز FAK و در​نهایت تیروزین فسفریلاسیون 
FAK23 در محل تیروزین 861 میش��ود]107[. تیروزین فسفریلاس��یون 

FAK مس��یرهای پیام رسان منجر به پرولیفراسیون، گسترش و مهاجرت 
س��لولی و ممانعت از مرگ سلولی آنویکیس24 و بقاء سلول​های توموری را 

آغاز می​کند]108[ )تصویر شماره 5(.

تأثیر بر آنژیوژنز: ادامۀ فرآیند رش��د تومور و متاستاز نیازمند خونرسانی 
کافی به محل و رگزایی می​باش��د. فرآیند آنژیوژنز به​وس��یلۀ فاکتور رشد 
 VEGF25 و فعال شدن مسیرهای پیام​رسان JAK/STAT میانجی​گری

می​ش��ود.VEGF مترش��حه از س��لول​های توموری در پرولیفراس��یون، 
مهاجرت، س��ازماندهی مجدد اسکلت سلولی و مورفوژنز توبولی سلول​های 

23. Focal adhesion kinase
24. Anoikis cell death
25. Vascular endothelial growth factor

اندوتلیال عروق نقش محوری دارد]109و110[. ترش��ح لپتین، محرومیت 
غذایی و هیپوکس��ی با افزایش ROS باع��ث افزایش بیان ژن EGFV با 
دخالت فاکتور القاء شونده توسط هیپوکسی )HIF-1( و p300 می​شوند و 
IL- آنژیوژنز را القاء می​کنند]25[.  هیپوکسی روی برخی عوامل رگزا مانند
1β ،FGF،TNF و IL-8 نیز تأثیر القایی دارد]ROS .]111 با تأثیر بر 
آنژیوپوئیتین مهاجرت و پرولیفراسون سلول​های اندوتلیال عروق را تحریک 
)MMP-1( 1-می​کند]112[. القاء ترش��ح ماتریک��س متالوپروتئین��از 
از سلول​های توموری فرآیند مهم دیگر در رشد عروق می​باشد که به​شدت 
 ROS می​باشد]113[. در​صورتی​که مهارکننده​های تولید ROSتحت​تأثیر
 و یا آنتی​اکسیدان​ها آنژیوژنز را مهار می​کنند]ROS .]114 با فعال​کردن
هم اکس��یژناز-1 و تولید مونوکسیدکربن و همچنین القاء تشکیل نیتریک​
اکساید باعث افزایش قطر عروق خونی و خونرسانی بهتر به بافت توموری 

می​شود]115[.

نتیجه​گیری کلی
 ROS تقریباً تمام سلول​های سرطانی به​دلیل تغییرات متابولیک، میزان
بالایی دارند که بایستی این امر در انواع روش​های درمانی موردتوجه قرار 
گیرد. س��لول​های توموری در پاس��خ به افزایش نسبی ROS بیان عوامل 
آنتی​اکس��یدان خود را افزایش می​دهند و س��ازگار می​ش��وند که این امر 
در​نهایت منجر به مقاومت دارویی س��لول​های س��رطانی می​شود. مکانیزم​
هایی که ضمن در​نظر داش��تن مسیرهای پیام​رسانی سلول​های سرطانی و 
 کنترل آن​ها، میزان استرس اکسیداتیو سلول را تغییر می​دهند، می​توانند
در غلبه بر مقاومت دارویی و حذف سلول​های توموری نقش مهمی داشته 

باشند.

  تصوی�ر 5: کیناز اتصال فوکال )FAK( تیروزین​کینازی اس�ت ک�ه اتصال آن به اینتگرین 
باعث اتوفسفریلاس�یون ریش�ه​های تیروزین و فعال شدن آن می​ش�ود خاصیت تیروزین​

کینازی گاهی به​وسیلۀ محرک​های متعددی مانند  ROS نیز القاء می​شود. FAK فسفریله 
ش�ده با Src کمپلکس تش�کیل می​ده�د و بس�یاری از عملکردهای انکوژنی�ک Src را با 
تحریک مس�یرهای س�یگنال​دهی مختلف میانجی​گری می​کند که در​نهایت منجر به رشد 
مس�تقل از تماس، بقاء، مقاومت به مرگ س�لولی آنویکیس، گسترش و مهاجرت سلول​های 

توموری می​شود. 
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