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خلاصه

مقدمه: هایپرترمی با لیزر یکی از امیدبخش​ترین شیوه​های غیرتهاجمی درمان سرطان است. 
افزودن نانومیله​های طلا به بافت باعث بهبود قابل توجه در فرآیند درمان می​ش��ود. کنترل دما 
به​منظور افزایش دما و حفظ بافت سالم در​طی فرآیند درمان الزمی است. در این مقاله فرآیند 
درمان س��رطان پوس��ت با لیزر و نانومیله​های طلا شبیه​سازی و مورد بررسی قرار گرفته است. 
همچنین در این مقاله برای اولین​بار توزیع دما در بافت پس​از توقف تابش لیزر مورد بررس��ی 

قرار گرفته است.

روش بررس�ی: تومور و دامنۀ فیزیکی به​صورت اس��توانه​هایی به​ترتیب با شعاع و ارتفاع )5 
،10( و )10 ،20( میلی​متر درنظر گرفته ش��ده و نانومیله​های طلا با غلظت 0/001 درصد و به​
 طور یکنواخت در ناحیۀ تومور توزیع ش��ده اس��ت، سپس ناحیۀ تومور تحت​تابش لیزر با شدت

W/cm2 1 قرار گرفته اس��ت. شبیه​سازی​ها براس��اس حل همزمان معادلۀ بیوگرمایی، معادلۀ 

آرنی��وس و ب��ا درنظر​گرفت��ن جذب نور لیزر در توم��ور، نانومیله​های طلا و باف��ت بیمار و با به​
کاربردن مدل کریبیج​ولمر و با روش المان محدود FEM انجام ش��ده اس��ت. در شبیه​سازی​ها 
تأثیر پراکندگی نور لیزر، گرمای متابولیک، رس��انش بافت و تومور و نیز نرخ پرفیوژن خون در​

نظر​گرفته شده است.

یافته‌ها: نتایج تحقیقات نش��ان می​دهد که بیش��ترین مقدار افزایش دما در سطح و در مرکز 
تومور وجود دارد و دما در این ناحیه تا 98 درجۀ س��انتی​گراد افزایش می​یابد و با دور​ش��دن از 
این نقطه در راس��تای ش��عاعی و راستای محور z میزان افزایش دما کاهش   می​یابد. همچنین 
نقطۀ مرکزی دارای بیش��ترین شیب افزایش کس��ر تخریب می​باشد و این شیب همانند دما با 
دور ش��دن از نقطۀ فوق کاهش می​یابد. نتایج بررس��ی تأثیر شدت و زمان تابش لیزر نشان داد 
ک��ه این دو کمیت تأثیر زیادی در فرآیند درمان دارند به​طوری​که انتخاب نادرس��ت آن​ها می​
تواند منجر​به عدم تخریب کامل تومور شود. همچنین نتایج نشان داد که مقدار دما پس​از توقف 
تاب��ش لیزر کاهش پیدا می​کند و دمای تمام نقاط بافت و تومور پس​از 80 ثانیه از توقف تابش 

به کمتر از 44 درجۀ سانتی​گراد می​رسد که دمایی ایمن برای بافت می​باشد.

واژه‌های كليدی: فتوترمال تراپی، نانو​میله​های طلا، تومور سرطان پوست، معادلۀ بیوگرمایی، 
روش المان محدود
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مریم علیان نژادی و همـکـاران            3

مقدمه
تکثیر غیرعادی س��لول و عدم توانایی بدن در رفع این مش��کل منجربه 
ایجاد تومورهای س��رطانی می​ش��ود. این سلول​های س��رطانی می​توانند 
از​طریق عروق لنفاوی به س��ایر قس��مت​های بدن منتق��ل گردند و باعث 
مختل​ش��دن عملکرد اعضاء اصلی بدن و حتی مرگ فرد بیمار شوند. تمام 
س��لول​های بدن چه سلول​های طبیعی و چه غیر طبیعی به گرما حساس 
هس��تند، بنابراین یک شیوۀ رایج برای درمان تومورهای سرطانی استفاده 
از منابع مختلف گرما مثل لیزر]1[ مایکروویو]2[و امواج فراصوت با شدت 
بالا )HIFU(1]3[ برای تخریب سلول​های سرطانی می​باشد. این سلول​ها 
در​اثر افزایش دما تخریب می​ش��وند، این روش درمان به روش هایپرترمی 
معروف می​باشد. .هایپرترمی می​تواند به​تنهایی یا به​همراه سایر روش​های 
اس��تاندارد مانند رادیوتراپی و ش��یمی​درمانی استفاده ش��ود]4و5[. نتایج 
تحقیقات نش��ان داده است که سلول​های تومور در PH پایین​تری نسبت 
به س��لول​های س��الم قرار دارند و بنابراین حساس��یت بیشتری نسبت به 
اعمال حرارت دارند و س��ریع​تر از​بین می​روند. همچنین قس��مت​هایی از 
تومور که هیپوکسیک هستند و پرفیوژن و انتقال اکسیژن کمتری به این 
نواحی اتفاق می​افتد، س��ریع​تر گرم می​شوند و امکان گرم​کردن انتخابی تا 

حدودی فراهم است]6[.  

استفاده از هر​یک از منابع گرمایش فوق دارای مزایا و معایب خاص خود 
می​باشد. استفاده از لیزر برای درمان سرطان نسبت به سایر روش​ها دارای 
عوارض کمتری اس��ت و دوران نقاهت کمت��ری دارد، بنابراین مورد توجه 
خاص قرار گرفته اس��ت. اساس این فرآیند تبادل حرارتی بین پرتوی لیزر 
و ناحیۀ تومور می​باش��د و در هایپرترمی با لی��زر به​دلیل جذب پایین نور 
لی��زر در ناحیۀ تومور، عملًا ش��دت​های بالای نور لی��زر و زمان​ تابش زیاد 
مورد نیاز است و همچنین نور جذب​نشده وارد نواحی بعدی بدن در مسیر 
انتشار خود می​شود که می​تواند به آن اعضا آسیب قابل توجهی وارد کند. 
خوش��بختانه پیش��رفت​های اخیر در زمینۀ نانوفناوری و نانوبیوتکنولوژی 
دریچۀ جدیدی را در حوزۀ درمان غیرتهاجمی تومورهای س��رطانی با لیزر 
گشوده است. نانو​مواد دارای جذب بالای نور لیزر در نواحی مرئی و مادون 
قرمز می​باشند، بنابراین با وارد کردن نانو​مواد سازگار با ساختار زیستی در 
ناحیۀ تومور و تابش نور لیزر می​توان شرایطی را ایجاد کرد که نور لیزر به 
مقدار زیاد در ناحیۀ تومور جذب شود و دما در ناحیۀ تومور افزایش یابد و 
تومور س��رطانی تخریب شود. در​این​صورت نیازی به شدت​های بالای لیزر 
و زمان​های بالای تابش وجود ندارد و عملًا بخش ناچیزی از ش��دت لیزر 

وارد نواحی دیگر بدن می​شود]7​9[.

درادامۀ روند تحقیقات، نانو​مواد مختلف با ش��کل و س��ایز متفاوت برای 
این منظور مطرح و مورد بررس��ی قرار گرفتند ک��ه از​آن​جمله می​توان به 

High​Intensity Focused Ultrasound .1

نانوپوس��ته​ها طلا ]8و9[ و نانومیلۀ طلا )GNR(2 ]10​12[ و نانولوله​های 
کربن��ی]13و14[ و نانومکعب​های طلا]15و16[ اش��اره کرد. نتایج درمان 
تومور س��رطانی در موش با اس��تفاده از لیزر و نانو​​لوله​های کربنی نش��ان 
داد ک��ه توم��ور کاملًا از بین رفته و موش بهبود کامل یافته اس��ت و فقط 
زخمی سطحی روی پوست آن مشاهده شد]17[. بیشتر تحقیقات در این 
حوزه بر​روی نانو​مواد طلا متمرکز ش��ده اس��ت که دلیل این امر سازگاری 
خوب این ماده با بافت بدن اس��ت. نتایج تحقیقات بر​روی طلا نش��ان داد 
که طول​موج جذب بیش��ینۀ نانو​پوسته​ها و نانومیله​های طلا را می​توان به​
سهولت با تغییر نسبت قطر پوسته به قطر هستۀ نانوپوسته​ها و نیز نسبت 
قط��ر به ط��ول نانومیله​ها تغیی��ر داد و آن​را روی طول​موج خاصی تنظیم 
ک��رد. به​طور متداول جنس و ابع��اد نانو​مواد را طوری انتخاب می​کنند که 
بیش��ترین جذب را در ناحیۀ NIR و طول​موج 700​2500 نانومتر داشته 
باش��د. به این ناحیه از طیف الکترومغناطیس��ی، نوار​درمانی گفته​می​شود 
و برای درمان س��رطان مناسب​تر می​باش��د]18[ .ناحیۀ میانی نوار درمان 
برای درمان تومور س��رطانی با لیزر و نانو​مواد بس��یار مناسب است زیرا در 
این ناحیه جذب بافت س��الم بسیار ناچیز و قابل صرف​نظر کردن می​باشد 
درحالی​که جذب نانوپوسته​ها و نانو​میله​ها در این ناحیه زیاد است. در​واقع، 
هر​چه به مرز​های نوار درمانی نزدیک می​ش��ویم، میزان جذب نور افزایش 
می​یاب��د که این افزای��ش در طول​موج​های ح��دود 7000 نانو​متر و کمتر 
از آن به​دلی��ل جذب بالای خون در ای��ن ناحیه و در طول​موج​های حدود 
2500 نانو​متر و بیش��تر از آن به​دلیل جذب بالای نور لیزر توسط رطوبت 
موجود در بافت می​باش��د. نتایج بررس��ی​ها بر​روی نانوپوسته​ها و نانومیله​

های طلا نشان داد که نانومیله​ها نسبت به نانوپوسته​ها دارای جذب بالاتر 
و تولید گرمای بیشتر در نوار درمانی می​باشند]19[. بنابراین در این مقاله 
اس��تفاده از نانومیله​های طلا برای درمان تومورهای سرطانی ناحیۀ پوست 

مورد بررسی قرار گرفته است.

کنت��رل دما و جلوگی��ری از افزایش بیش از ح��د آن در ناحیۀ تومور و 
بافت س��الم یکی از مهم​ترین چالش​های موجود در این حوزه می​باش��ند 
به​طوری​که عدم کنترل دقیق آن می​تواند منجر​به آس��یب​های برگش��ت​

ناپذیری در بافت سالم و یا عدم نابودی کامل تومور سرطانی شود. عوامل 
مؤث��ر در ترموتراپی با نور لیزر و نانو​م��واد عبارت​اند​از: جنس، نوع، غلظت 
و ابع��اد نانومواد، طول​موج و ش��دت نور لیزر، نوع بافت س��رطانی و بافت 
س��الم اط��راف آن و مدت زمان ق��رار گرفتن بافت در مع��رض تابش نور 
لیزر. انتخاب طول​موج لیزر فرودی با توجه به ناحیه​ای که بافت س��رطانی 
 در آن ق��رار دارد و نیز مش��خصات نانو​موادی که تزریق شده​اس��ت، انجام
می​ش��ود اما انتخاب نادرست شدت و یا مدت زمان تابش و نیز غلظت نانو​
م��واد باعث پیش��روی فرآیند درمان در جهت معکوس می​ش��ود، بنابراین 
تخمین مقادیر مناس��ب و بررس��ی نتایج درمان از​طریق شبیه​س��ازی و یا 
آزمایش بر​روی حیواناتی که دارای بافت مش��ابه می​باش��ند، الزامی است. 

Gold Nanorod .2
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استفاده از شبیه​س��ازی عددی این امکان را فراهم می​کند که در​مورد هر 
نوع تومور س��رطانی با هر ابعاد و در هر ناحیه از بدن اطلاعات مناس��بی 
در مورد پارامترهای مؤثر به​دس��ت آورد و خسارات وارد​شده به بیمار را به 

حداقل مقدار ممکن رساند.

در​واق��ع، این مدل​س��ازی امکان برنامه​ری��زی پیش​از ش��روع درمان را 
فراهم می​کند و با اس��تفاده از این ش��یوه می​توان تأثیر طیف گسترده​ای 
از پارامترهای مؤثر بر فرآیند درمان را بهتر ارزیابی کرد و بهترین ش��رایط 
را ب��رای فرآیند درمان انتخاب نمود، درحالی​که عملًا انجام فرآیند درمان 
بدون شبیه​س��ازی و یا بررسی آزمایش��گاهی و بدون برآورد دارای ریسک 
بالا می​باشد. بنابراین پژوهش​​های زیادی در​راستای شبیه​سازی و بررسی 
تأثیر نانو​مواد در فرآیند درمان سرطان با لیزر انجام شده است]20​23[، در 
این پژوهش​ها متأسفانه به نقش ضرایب نوری نانو​مواد بخصوص GNR و 
نیز مشخصات بافت سالم اطراف تومور به اندازۀ کافی پرداخته نشده است 
و بیشتر تحقیقات بر​روی نانو​پوس��ته​ها که ضریب پراکندگی آن​ها بیشتر 
از ضریب جذب آن​هاست، متمرکز شده است]24[. همچنین، در بسیاری 
از موارد شبیه​س��ازی​ها به​شیوه​ای نسبتاً س��اده و با در​نظر​گرفتن تومور و 
بدون توجه به اهمیت بافت سالم اطراف آن انجام شده است]25[ و تأثیر 
پارامترهای مهمی مثل جنس، ش��کل، اندازه و ابعاد نانو​مواد و مشخصات 
پرتوی لیزر تابش​ش��ده همچنان به​طور کامل بررس��ی نشده است و شبیه​

س��ازی در ح��وزۀ درمان تومور س��رطانی با لیزر و نانو​م��واد از موضوعات 
روز تحقیقات در حوزۀ بین​المللی می​باش��د]26​29[. در این مقاله فرآیند 
درمان تومور س��رطان پوس��ت با لیزر و نانومیله​های طلا  انباشته​شده در 
ناحیۀ تومور و با در​نظر​گرفتن بافت سالم اطراف تومور  شبیه​سازی و مورد 
بررس��ی قرار گرفته است. نکتۀ مهم دیگری که در این مقاله مورد بررسی 
قرار گرفته اس��ت، تغییرات توزیع دما پس​از اتمام تابش نور لیزر است که 
تا​کنون با​توجه به اطلاعات نویس��ندگان مورد بررس��ی قرار نگرفته است،. 
دو فرآین��د غالب رس��انش و همرفت عملًا می​توانن��د باعث انتقال گرما از 
ناحیۀ مرکزی تومور شوند و عملًا این امر می​تواند بر​روی تخریب سلولی و 
فرآیند درمان تأثیر قابل توجهی داشته باشد که تاکنون مورد بررسی قرار 
نگرفته است. در این مقاله در​ابتدا مبانی و تئوری فرآیند درمان به​اختصار 
بیان ش��ده و در قس��مت بعد مدل​سازی و ش��رایط مرزی بیان شده است 

سپس نتایج، شبیه​سازی و در​نهایت نتیجه​گیری کلی ارائه شده است.

مبانی و تئوری 

به​طور کلی اس��اس درمان تومور سرطانی با لیزر و نانو​ذرات، برهمکنش 
نور لیزر و جذب آن توس��ط نانومواد موجود در ناحیۀ تومور و افزایش دما 
در ناحیۀ تومور می​باش��د که منجر به تخریب سلول​های سرطانی و تومور 

می​شود. نمایی از این فرآیند در شکل )1( نشان داده شده است.

با​توج��ه به وج��ود گردش خ��ون در بافت، مدل پنس یک مدل بس��یار 
کارآمد و پذیرفته​ش��ده در هایپرترمی می​باشد]30[. در این مدل گردش 

خون در مویرگ​ها به​صورت همس��انگرد فرض​شده​اس��ت و جهت جریان 
خون در نقاط مختلف بافت یکس��ان است. خونی که در مویرگ​ها جریان 
دارد با دمای معمول بدن )35​37 درجۀ س��انتی​گراد( وارد بافت می​ش��ود 
و با آن تبادل گرمایی می​کند. معادلۀ زیس��ت گرمایی پنس به​صورت زیر 

می​باشد:

)1

( ) ( )2
t t t b b b c m a

TC K T C T T q q
t

r ω r∂
= ∇ + − + +

∂

در این معادله پارامتره��ای T و Tc به​ترتیب دمای بافت و دمای 
بدن می​باشند. در جملۀ سمت چپ تساوی پارامتر   ظرفیت گرمایی 
ویژۀ بافت و   چگالی بافت است. جملۀ اول در سمت راست تساوی 
بیانگر انتقال انرژی گرمایی از​طریق رس��انش و Kt ضریب رسانش 
بافت می​باشد. جملۀ دوم مربوط به فرآیند همرفت و تبادل گرمایی 
خون با بافت اس��ت. پارامتره��ای Cb و به​ترتیب مربوط به ظرفیت 
گرمایی ویژه و چگالی خون و bω نرخ پرفیون خون اس��ت. qm و 
qa به​ترتیب بیانگر گرمای متابولیک و گرمای ناش��ی از جذب منبع 
خارجی می​باشند که در این مقاله لیزر به​عنوان منبع خارجی مورد 
اس��تفاده قرار گرفته اس��ت. ش��دت پرتو در بافت با رابطۀ )2( قابل 

محاسبه است.

( ) ( ) ( )exp abs sca Z
Z oI I m mλ λ − +=                               )2

که در اینجا I0 ش��دت اولیه، I ش��دت پرتوی لیزر در راستای محور z و 
mabs و msca به​ترتیب ضرایب جذب و پراکندگی بافت می​باشند. 

به​طور کلی وقتی بافت فاقد نانومواد در معرض تابش الکترومغناطیس��ی​ 
در نوار درمانی قرار بگیرد، مقدار انرژی جذب​ش��ده توس��ط بافت بس��یار 
ناچیز اس��ت]33[ و به​طور نوعی در​صورتی​که پرتوی تابش��ی در محدودۀ 

شکل1: نمایش طرح​وار بافت، تومور و نامیله​ها
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مریم علیان نژادی و همـکـاران            5

طول​موج 725​935 نانو​متر باشد، ضریب جذب و پراکندگی به​ترتیب برابر 
 GNR 0/1062 می​باش��ند]34[ در​حالی​که با افزودن​m​1  0/95 و m​​1 با
 110​m​1 با قطر 5 نانومتر و نسبت قطر به ارتفاع 3، مقدار ضریب جذب تا
افزای��ش و ضریب پراکندگی تا 1​m​1 0/037کاهش یافته اس��ت بنابراین 
افزودن GNR به بافت باعث می​شود که جذب انرژی پرتو افزایش یابد و 
بنابراین در این محیط قبل​از این​که پرتو توسط بافت پراکنده شود، به​طور 

قابل توجهی توسط آن جذب ​شود]35[.

2-1 ضرایب نوری نانو​میله​های تعبیه​شده در بافت

نظریۀ برهمکنش تابش با نانو​ذرات که توسط مای3 درسال 1908 میلادی 
ارائه شد، نشان می​دهد که ضرایب نوری نانو​ذرات بسیار به طول​موج تابش 
بس��تگی دارد. همچنین ابعاد و ش��کل نانو​ذرات و نیز ضریب دی​الکتریک 
م��اده نیز از عوامل مؤثر بر این ضرایب نوری می​باش��ند. در​صورتی​که نانو​
ذره​ای ب��ه قط��ر D و ضریب دی​الکتریک e در داخ��ل محیطی با ضریب 
دی​الکتریکem در​نظر گرفته​ش��ود و تحت تابشی در ناحیۀ فروسرخ قرار 
گیرد، در​این​صورت اگر D ≤ λ/10 باش��د، نانوذره تحت میدان​الکتریکی 
یکنواختی قرار می​​گیرد و مانند یک دوقطبی رفتار می​کند]36[ و به​دلیل 
حرکت الکترون آزاد نوار رس��انش عملًا مرکز بار​های منفی و مثبت از​هم 
جدا ش��ده و نانو​ذره قطبیده می​شود. در این شرایط می​توان ضرایب نوری 
نانو​ذرات را با دقت مناس��بی پیش​بینی کرد]37[. قطبش)αi( نانومیله​ای 
ب��ا قطر D و طول L و ضری��ب دی​الکتریک e که در داخل یک محیط با 

ضریب دی​الکتریک em جای​گذاری​شده برابر است با:

( )
24

3 3
m

i
i m m

D I
p

e ea π
e e e

 −
=   − + 

                                )3

که اندیس 3و2وi =1 بیانگر تعداد محورهای مختصات اس��ت. همچنین 
عامل هندسی pi برابر است با:

2

1 2

1 1 1 1
2 1

x xp In
x x x
−  +  = −  −  

                                )4

که در اینجا x برابر است با:
2

1 Dx
l

 = −  
 

​4الف(                                  

و برای دو جهت دیگر داریم که:

1
2 3

1
2

pp p −
= = ​4ب(                                 

ضری��ب ج��ذب و پراکندگی برای محیط��ی که در آن نانومیله باکس��ر 
حجمی ƒn  جاسازی شده، از رابطۀ زیر به​دست می​آیند:

Mie .3

( )
3

2 2 2
1 2 34

16
18

v
sca

np

f
V

πm a a a
λ

= + + 5 ​الف(                   

31 22
3 3 3

v
abs

np

f imag
V
π aa am

λ
 = + + 
 

​5 ب(                      

ک��ه در این دو معادله پارامترهای  Vnp حجم نانومیله​ها و λ طول​موج 
پرتوی تابشی و image قسمت موهومی عبارت فوق است.

در م��واد فلزی نوس��انات الکترون​های آزاد نق��ش مهمی در خصوصیات 
ن��وری و ضری��ب دی​الکتریک آن​ه��ا دارند. به​طور​کلی دو م��دل درود4 و 
کریبیج​ولمر5 برای مش��خص کردن ضریب دی​الکتریک استفاده می​شود. 
چ��ون مدل درود گذار​های داخل بان��د را در​نظر نمی​گیرد بنابراین در این 
مقاله از مدل کریبیج​ولمر استفاده شده است. ضریب دی​الکتریک نانومیله 

برابر است با:

)6

که در اینجا

6 ​الف(

​6 ب(

در معادلۀ�� ف��وق، ω فرکان��س زاوی��ه​ای پرتوی تابش��ی،ωp  فرکانس 
پلاس��مونیک الکت��رون آزاد، n0 چگالی تعداد الکترون و e0 گذردهی خلأ 
اس��ت. همچنی��ن me  و e به​​ترتیب جرم و بار الکت��رون و Γd و Γ0  به​

ترتی��ب ضریب میرایی ناش��ی از اندازۀ نانو​میله​ و ضریب میرایی ناش��ی از 
برهمکنش​های مختلف الکترون اس��ت. پارامت��ر A در​واقع ثابتی بر​مبنای 

مقادیر تجربی است که معمولاً برابر 1 در​نظر گرفته می​شود.

2-2 کسر تخریب سلولی بافت و تومور

ب��رای پیش​بین��ی می��زان آس��یب گرمایی برگش��ت​ ناپذی��ر بافت​های 
بیولوژیکی کمیت کس��ر تخریب سلولی تعریف می​ش��ود]39و40[. برای 
محاسبۀ کسر تخریب حرارتی سلول​های موجود در تومور و بافت از معادلۀ 
 آرنیوس اس��تفاده می​ش��ود. این میزان تخریب W به انرژی فعال​س��ازی

کنش​های برگش��ت​​ناپذیر، دما و م��دت زمانی که باف��ت تحت​تابش قرار 
 گرفته​اس��ت، بس��تگی دارد. کس��ر تخریب س��لولی W برابر است با]41[:

Drude’s model .4

Kreibig-Vollmer model .5

( ) ( )
2

2 0
2 2 2 2 2 2 2 2

1 1, p d
p

o d d o

D i
ω

e ω e ω ω
ω ω ω ω ω

   Γ Γ
= + − + −   + Γ + Γ + Γ + Γ   

2 F
d o

Av
D

Γ = Γ +

2
o

p
o e

n e
m

ω
e

=
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)7

  ک��ه در اینجا پارامتره��ای Ea و A به​ترتیب انرژی فعال​​س��ازی و فاکتور 
J/ ثابت جهانی گازها است که برابر R دمای بافت و T .فرکانس��ی هس��تند
(mol.K) 8/314 می​باشد. اگر W بزرگ​تر از یک باشد یعنی بافت تخریب​

شده و اگر کمتر از یک باشد یعنی بافت آسیب جدی ندیده است. ثابت​های 
معادلۀ آرنیوس معمولاً روی پوس��ت حیواناتی که دارای بافت پوست مشابه 
انسان هستند، گزارش شده​است و برای پوست انسان به​ندرت گزارشی وجود 

دارد]42[.

​3- مدل​سازی و شرایط مرزی

در ای��ن مقاله درمان تومورهای س��رطان پوس��ت با لی��زر و نانومیله​های 
طلا شبیه​س��ازی شده و مورد بررس��ی قرار گرفته است. در شکل 2 نمایی 
از ناحیۀ دارای س��لول​های س��رطانی و بافت سالم نش��ان داده شده است. 
همان​طور​که مش��اهده می​ش��ود، دامنۀ فیزیکی با ضخامت 10 میلی​متر به​
عن��وان بافت در​نظر گرفته​شده​اس��ت ک��ه ناحیۀ 5 میلی​مت��ری بالای آن 
 تومور و س��ایر نواحی بافت س��الم می​باش��ند. ناحیۀ باف��ت و تومور در​واقع

استوانه​ای​ش��کل است که از دوران ش��کل 2 حول محور z به​دست می​آید. 
در ش��کل2 س��اختار به​صورت دو​بعدی نشان​داده​شده​اس��ت که این امر به​
دلیل تقارن​های موجود در س��اختار و فرآیند درمان اس��ت. ش��دت و طول​
 موج لیزر تابش��ی به​ترتیب W/cm2 1 و nm 796 می​باشد. در بررسی​ها
فرض شده که نانومیله​ها در ناحیۀ تومور به​طور یکنواخت توزیع شده است. 
همچنین کسرحجمی نانومیله​های طلا )GNR( یکی از پارامتر​های مهم در 
تعیین میزان جذب انرژی پرتو اس��ت. در یک دز قابل توجه از نانو​میله​های 
تزریق شده، کسرحجمی در محدودی0/01-​0/00001 درصد قرار دارد که 

در این مقاله غلظت نانومیله​ها 0/001 درصد در​نظر​گرفته​شده​است.

همچنی��ن در این مقال��ه ضرایب نوری نانو​میلۀ طلا با اس��تفاده از تئوری 
پراکندگی مای محاس��به شد و با انتخاب دقیق قطر نانومیله و نسبت ابعاد 
آن ضری��ب پراکندگی به حداقل و ضریب جذب به حداکثر رس��انده ش��ده 
اس��ت. برای بررس��ی توزیع دما در بافت و تومور معادلات بیوگرمایی پنس 

 FEM به​هم��راه مع��ادلات 2 تا 7 به​صورت ع��ددی و با اس��تفاده از روش
ح��ل و نتایج مورد بررس��ی قرار گرفته اس��ت. با​توجه ب��ه اینکه وجود لایۀ 
چرب��ی مانند عایق عمل می​کند، بنابراین بافت به​صورت یک سیس��تم بی​
درو در​نظر​گرفته​ش��ده و توزیع دمای یکنواخ��ت و طبیعی بدن )37 درجۀ 
س��انتی​گراد( به​عنوان ش��رط اولیه برای شبیه​س��ازی​ها مورد استفاده قرار 
گرفته اس��ت. مقادیر کمیت​های به​کار​رفته در شبیه​س��ازی برای محاسبۀ 
ضری��ب دی​الکتری��ک نانومیله با معادلۀ کریبیج​ولم��ر ]42[ و نیز مقادیر و 
ثابت​ه��ای فیزیولوژیکی بافت و تومور به​ترتیب در جدول 1 و 2 ارائه ش��ده 
 اس��ت. همچنین پارامتر​های معادلۀ آرنیوس از مرجع ]43[ برابر اس��ت با:

.A = 3.1 x 1098 و Ea = 6.03 x 105 J/mol

یافته​ها
با توجه به مرجع]37[ اگر بافت به​مدت 4 تا 6 دقیقه در دمای 50 درجه 
قرار بگیرد، آس��یب جدی می​بیند و تخریب می​ش��ود در​حالی​که اگر بافت 
حتی یک س��اعت در دمای 44 درجۀ س��انتی​گراد باقی بماند، بافت آسیب 
جدی نخواهد دید. بنابراین به​وضوح اهمیت بررس��ی دما مشخص می​شود 
زیرا همواره ش��رایط دمایی مورد نظر اس��ت که ناحیۀ�� تومور به​طور کامل 
تخریب و بافت سالم کمترین آسیب ممکن را ببیند. در شکل 3 توزیع سه​
بعدی دما در ناحیۀ بافت و تومور با حضور نانومیله​ها با غلظت 0/001 درصد 
و در زمان تابش 110s نشان داده شده است. با​توجه به نتایج شکل3 افزایش 
دما به​خوبی فقط به منطقۀ تومور محدود است و  بیشینۀ دما برابر 98 درجۀ 
س��انتی​گراد می​باش��د. این افزایش قابل​توجه دما به این دلیل است که نانو​

میله​ها دارای جذب بالا در این طول​موج می​باشد و بنابراین دما به​طور قابل 
توجهی در ناحیۀ تومور افزایش می​یابد و سلول​های تومور تخریب می​شوند  شکل2: نمایی از ناحیۀ بافت و تومور 

جدول1: مقادیر کمیت​های معادلۀ کریبیج-ولمر[42]

 r 
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در​صورتی​که اگر نانومیله​های طلا به س��اختار اضافه نمی​ش��د و از لیزر فوق 
با همین شدت استفاده می​شد، عملًا دمای ناحیۀ تومور در حد چند درجه 
افزایش پیدا می​کرد. همچنین بیشینۀ دما در )z=0 وr=0( مشاهده می​شود. 
این پدیده به این علت اتفاق می​افتد که ش��دت پرتوی لیزر در مرکز تومور 
بیشینۀ مقدار را دارد و علاوه براین با انتشار نور لیزر در داخل تومور و بافت 
عملًا بخش��ی از شدت لیزر جذب​شده و بیشترین مقدار شدت لیزر و جذب 

در سطح پوست می​باشد.

در ش��کل 4 به​منظ��ور وضوح بیش��تر و اطلاعات دقیق​ت��ر از توزیع دما، 

کانتور​ه��ای دمایی در عمق​های مختلف رس��م ش��ده اس��ت. ناحیۀ تومور 
در راس��تای   با خط​چین مش��خص شده اس��ت. نتایج نشان می​دهد که 
بیشتر تابش در لایه​های بالایی جذب شده و دما در ناحیۀ تومور بین 98-​
55 درجۀ س��انتی​گراد و در ناحیۀ بافت س��الم بین 55-​40 درجۀ س��انتی​

گراد می​باش��د که برای از​بین​بردن س��لول​های تومور کافی است و به بافت 
 س��الم اطراف آن آسیب نمی​زند. همچنین دما با افزایش عمق کاهش پیدا

می​کند که به​دلیل کاهش ش��دت نور لیزر با افزایش عمق بافت اس��ت. در 
شکل 5 نمودار توزیع شعاعی دما برای سه عمق مختلف z =0، 2/5، 5  میلی​

متر نشان​داده​شده​است که مؤید گفته​های فوق است.

 شدت تابشی قابل کنترل است اگر شدت تابش افزایش یابد، باعث می​شود
دما در س��طوح بالایی بیشتر شود و این افزایش دما در سطوح بالایی تأثیر 
قاب��ل ملاحظه​ای دارد اما در دمای لایه​ه��ای عمیق​تر تأثیر زیادی نخواهد 

داشت.

نکتۀ مهم دیگری که تا​کنون مورد بررس��ی قرار نگرفته اس��ت توزیع دما 
در ناحیۀ�� تومور و بافت پس​از خاموش ش��دن لیزر و ح��ذف تابش و تأثیر 
آن ب��ر فرآیند درمان اس��ت. عملًا در این ش��رایط اگرچه ک��ه تابش لیزر و 

جدول1: مقادیر کمیت​های معادلۀ کریبیج-ولمر]42[

ش�کل3: توزیع س�ه​بعدی دما در ناحیۀ تومور و بافت با توزیع یکنواخت نانومیله​های طلا با 
110 s 1 در مدت​زمان تابش W/cm2 غلظت 0/001 درصد و شدت تابش
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جذب آن توسط نانومیله​ها، بافت و تومور وجود ندارد اما، همچنان مکانیسم​
ه��ای مختلف از​جمله رس��انش بافت و همرفت ناش��ی​از پرفی��وژن خون و 
تولید گرمای متابولیک از​جمله مکانیسم​هایی هستند که بر​روی توزیع دما 
p = 0، 3، 6، 9، 12، 15، 18 تأثی��ر قابل توجهی دارند. بنابراین نقاطی ب��ا 

میلی​متر و عمق 2 میلی​متر در​زمان تابش لیزر و پس​از خاموش��ی آن مورد 
بررس��ی قرار گرفته اس��ت. این نقاط در شکل 5 نش��ان داده شده است. در 
شکل 6 نمودار دما برحسب زمان برای نقاط شکل 5 در شرایطی رسم شده​

است که بافت به​مدت 110 ثانیه تحت تابش لیزر قرار گرفته و سپس لیزر 
خاموش و تابش متوقف ش��ده است. نتایج نشان می​دهد که در تمام نقاط، 
دما پس​از خاموش شدن لیزر کاهش می​یابد که بیانگر این مطلب است که 
تأثیر همرفت در انتقال گرما از رس��انش بیشتر است. همچنین نتایج نشان 
می​دهد که شیب این تغییرات در نقاط نزدیک به مرکز تومور بیشتر است و 
با دور ش��دن از مرکز این شیب کاهش می​یابد همچنین این کاهش دما در 
ناحیۀ نزدیک به تومور دارای اهمیت بیشتری می​باشد که دلیل این موضوع 
این اس��ت که در شعاع​های بیش��تر دما به اندازه​ای که به بافت آسیب بزند، 

ش�کل4: نمودار کانتورهای دمایی در ناحیۀ تومور و بافت س�الم در زمان تابش s110، شدت 
تابش W/cm2 1 و نانومیله​های طلا با غلظت 0/001 درصد 

شکل6: ب( نمودار دما برحسب زمان درطی فرآیند درمان در نقاط شکل 6-الف.

شکل6: الف( نقاط مورد بررسی در عمق 2 میلی​متر و r = 0، 3، 6، 9، 12، 15، 18 m میلی​متر

ش�کل5: نمودار توزیع ش�عاعی دما در ناحیۀ تومور و بافت س�الم در زمان تابش s110، شدت 
تابش W/cm2 1 و نانومیله​های طلا با غلظت 0/001 درصد و سه عمق z =0 ، 2/5، 5 میلی​متر

افزایش نیافته است. همچنین دما پس​از 80 ثانیه از توقف تابش به کمتر از 
44 سانتی​گراد می​رسد که دمایی ایمن برای بافت می​باشد.

در ش��کل​های 7 ​ال��ف تا 7 ​ج نموداره��ای توزیع دم��ا به​ترتیب در چهار 
ش��دت تاب��ش I = 0/5، 1 ، 1/5  W/cm2 و زمان​ه��ای تاب��ش 20 و 60 
و 110 ثانیه نش��ان داده ش��ده اس��ت. ناحیۀ مرزی کس��ر تخریب حرارتی 
برابر Ω=1( 1( با خط قرمز در ش��کل​ها نش��ان داده شده است. همان​طور​

که ملاحظه می​ش��ود، در​ابتدا دما به اندازه​ای نیس��ت که به بافت آس��یب 
بزند ولی با گذش��ت زمان دما و در​نتیج��ه ناحیۀ تخریب کامل افزایش می​
بابد. همچنین نتایج نش��ان می​دهد که دمای ناش��ی از تاب��ش نور لیزر در 
ناحیۀ�� تومور و باف��ت با افزایش ش��دت افزایش می​یاب��د و در​نتیجه زمان 
 کمتری برای رس��یدن به دمای فرسایشی مورد نیاز است و در شدت تابش

W/cm2 0/5 و زمان تابش 20 ثانیه عملًا کس��ر تخریب حرارتی در تمام 

نقاط تومور و بافت سالم کمتر از یک است.

نتیجه​گیری
تکثیر غیرعادی س��لول و عدم توانایی بدن در رفع این مش��کل منجر به 
ایجاد تومرهای سرطانی، مختل​شدن عملکرد بدن و انتشار سرطان به سایر 
قسمت​های بدن می​شود. ش��یوه​های متداول درمان سرطان دارای عوارض 
متعددی می​باشند بنابراین استفاده از لیزر و فتوترمال​تراپی با لیزر به​عنوان 
یک روش امیدوارکننده در حوزۀ درمان س��رطان مطرح می​باش��د. در این 
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 )Ω=1( 0/5  و زمان​های پرتودهی 20، 60 و 110 ثانیه. خط قرمز مشخص​کنندۀ مرز کسر تخریب حرارتی کامل W/cm2 توزیع دما در ناحیۀ تومور و بافت س�الم در ش�دت تابش�ی )ش�کل7: الف
است که در ناحیۀ بالای آن Ω ≥ 1 و در ناحیۀ پایین آن Ω ≤ 1  است.

شکل7: الف( توزیع دما در ناحیۀ تومور و بافت سالم در شدت تابشی W/cm2 1  و زمان​های پرتودهی 20، 60 و 110 ثانیه. خط قرمز مشخص​کنندۀ مرز کسر تخریب حرارتی کامل )Ω=1( است 
که در ناحیۀ بالای آن Ω ≥ 1 و در ناحیۀ پایین آن Ω ≤ 1  است.

 )Ω=1( 1/5  و زمان​های پرتودهی 20، 60 و 110 ثانیه. خط قرمز مشخص​کنندۀ مرز کسر تخریب حرارتی کامل W/cm2 توزیع دما در ناحیۀ تومور و بافت س�الم در ش�دت تابش�ی )ش�کل7: الف
است که در ناحیۀ بالای آن Ω ≥ 1 و در ناحیۀ پایین آن Ω ≤ 1  است.

مقاله درمان سرطان پوست با فتوترمال​تراپی با نور لیزر و نانومیله​های طلا 
با غلظت 0/001 درصد مورد بررس��ی قرار گرفته اس��ت. تومور سرطانی به​

صورت ناحیۀ اس��توانه​ای با ش��عاع 10میلی​متر و ارتفاع 5 میلی​متر و دامنۀ 
فیزیکی به​صورت اس��توانه​ای با ش��عاع 20 میلی​متر و ارتفاع 10 میلی​متر 
در​نظر​گرفته​شده​اس��ت. محاسبات براساس حل همزمان معادلۀ بیوگرمایی، 
معادلۀ آرنیوس و با درنظر​گرفتن جذب نور لیزر در تومور، نانومیله​های طلا 
و بافت بیمار و با به​کاربردن مدل کریبیج​ولمر انجام ش��ده اس��ت. در شبیه​

سازی​ها تأثیر پراکندگی نور لیزر، گرمای متابولیک، رسانش بافت و تومور و 
نیز تغییرات نرخ پرفیوژن خون با دما در​نظر​گرفته​شده​است. بررسی​ها بر​روی 
توزیع دما نشان داد که بیشترین دما در مرکز تومور و در سطح قرار دارد که 
برابر با  98 درجۀ سانتی​گراد می​باشد همچنین دما با افزایش عمق و فاصله 
از مرکز تومور کاهش می​یابد. نتایج بررس��ی​ها بر​روی ش��دت و زمان تابش 

لیزر نش��ان داد که این دو کمیت تأثی��ر زیادی روی ناحیۀ تخریب حرارتی 
W/ کام��ل دارد به​طوری​که اگر ش��دت تابش و زمان تاب��ش به​ترتیب برابر

cm2 0/5 و 20 ثانیه انتخاب شود، دمای ایجاد شده به مقدار کافی نیست 

و تخری��ب حرارتی در تمام نقاط بافت و تومور کمتر از 1 اس��ت در​حالی​که 
با ش��دت W/cm2 1/5 و 110 ثانیه می​توان تومور را درمان کرد. مس��ئلۀ 
مهم دیگری که در این مقاله مورد بررس��ی قرار گرفته است، بررسی توزیع 
دما پس​از توقف تابش اس��ت. نتایج نش��ان داد که دما در تمام نقاط و پس​

از خاموش ش��دن لیزر کاهش می​یابد و شیب این تغییرات در نقاط نزدیک 
به مرکز تومور بیشتر است و با دور شدن از مرکز این شیب کاهش می​یابد. 
همچنین نتایج نشان می​دهد که دما پس از 80 ثانیه از توقف تابش به کمتر 

از 44 درجۀ سانتی​گراد می​رسد.
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